

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX 9.1

Geotechnical Assessment Report

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

COOM GREEN ENERGY PARK

GEOTECHNICAL ASSESSMENT REPORT

Prepared for: Coom Green Energy Park Ltd

Date: November 2020

Brookfield

Unit 6, Bagenalstown Industrial Park, Bagenalstown, Co. Carlow, R21 XA00, Ireland
T: +353 59 9723800 E: info@ftco.ie

CORK | DUBLIN | CARLOW

www.fehilytimoney.ie

TABLE OF CONTENTS

1.	INTR	ODUCTION
	1.1	General
	1.1	Details of Proposed Works
	1.2	Scope and Project Objectives
2.	DES	(STUDY 3
	2.1	Geology
		2.1.1 Quaternary Deposits
		2.1.2 Solid Geology
	2.2	Hydrogeology4
		2.2.1 Groundwater Vulnerability4
		2.2.2 Groundwater Bodies Description5
3.	SITE	WALKOVER8
	3.1	General8
А		UND INVESTIGATIONS
٦.	GNO	TE INVESTIGATIONS
	4.1	Summary of Ground Conditions Encountered
	4.1	Summary of Ground Conditions Encountered
	4.1	4.1.1 Proposed HDD Watercourse crossing Locations124.1.2 Proposed Borrow Pit Locations13
	4.1	4.1.1 Proposed HDD Watercourse crossing Locations124.1.2 Proposed Borrow Pit Locations134.1.3 Proposed Turbine Locations14
	4.1	4.1.1 Proposed HDD Watercourse crossing Locations124.1.2 Proposed Borrow Pit Locations134.1.3 Proposed Turbine Locations144.1.4 Geophysical Surveys15
	4.1	4.1.1 Proposed HDD Watercourse crossing Locations124.1.2 Proposed Borrow Pit Locations134.1.3 Proposed Turbine Locations144.1.4 Geophysical Surveys154.1.5 Groundwater Encountered15
	4.1	4.1.1 Proposed HDD Watercourse crossing Locations124.1.2 Proposed Borrow Pit Locations134.1.3 Proposed Turbine Locations144.1.4 Geophysical Surveys15
5.	4.2	4.1.1 Proposed HDD Watercourse crossing Locations124.1.2 Proposed Borrow Pit Locations134.1.3 Proposed Turbine Locations144.1.4 Geophysical Surveys154.1.5 Groundwater Encountered15
	4.2 GRO	4.1.1 Proposed HDD Watercourse crossing Locations124.1.2 Proposed Borrow Pit Locations134.1.3 Proposed Turbine Locations144.1.4 Geophysical Surveys154.1.5 Groundwater Encountered15Geotechnical Laboratory Testing16
	4.2 GRO	4.1.1 Proposed HDD Watercourse crossing Locations124.1.2 Proposed Borrow Pit Locations134.1.3 Proposed Turbine Locations144.1.4 Geophysical Surveys154.1.5 Groundwater Encountered15Geotechnical Laboratory Testing16UND MODEL18
	4.2 GRO SLOF	4.1.1 Proposed HDD Watercourse crossing Locations
	4.2 GRO SLOF 6.1	4.1.1 Proposed HDD Watercourse crossing Locations 12 4.1.2 Proposed Borrow Pit Locations 13 4.1.3 Proposed Turbine Locations 14 4.1.4 Geophysical Surveys 15 4.1.5 Groundwater Encountered 15 Geotechnical Laboratory Testing 16 UND MODEL 18 PE STABILITY ASSESSMENT 19 Factors Controlling the Stability of Slopes 19
	4.2 GRO SLOF 6.1 6.2	4.1.1 Proposed HDD Watercourse crossing Locations 12 4.1.2 Proposed Borrow Pit Locations 13 4.1.3 Proposed Turbine Locations 14 4.1.4 Geophysical Surveys 15 4.1.5 Groundwater Encountered 15 Geotechnical Laboratory Testing 16 UND MODEL 18 PE STABILITY ASSESSMENT 19 Factors Controlling the Stability of Slopes 19 Eurocode 7 and Partial Factors 19
	4.2 GRO SLOF 6.1 6.2 6.3	4.1.1 Proposed HDD Watercourse crossing Locations

	6.7	Slope Stability Analysis Models	22
	6.8	Slope Stability Analysis Results	22
7.	GEO [°]	TECHNICAL CONSIDERATIONS	23
	7.1	Turbine Foundations	23
	7.2	Access Tracks	
	7.3	Crane Hardstands	
	7.4	Substation Foundations and Platforms	
	7.5	Temporary Construction Compound Platforms	_
	7.6	Borrow Pit	
	7.7	HDD Watercourse Crossing	
8.	CON	ICLUSIONS AND RECOMMENDATIONS	27
LIS	T OF	TABLES	
			4
Tabl	e 2.1:	: Groundwater Vulnerability	
Tabl Tabl	e 2.1: e 2-2:		6
Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1:	: Groundwater Vulnerability: : Summary of Aquifer Classifications & Characteristics: : Site Walkover Summary	6 10 15
Tabl Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1: e 4.2:	: Groundwater Vulnerability: : Summary of Aquifer Classifications & Characteristics: : Site Walkover Summary: : Summary of Groundwater Encountered	
Tabl Tabl Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1: e 4.2: e 6.1:	: Groundwater Vulnerability : Summary of Aquifer Classifications & Characteristics	6 10 15 16
Tabl Tabl Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1: e 4.2: e 6.1:	: Groundwater Vulnerability : Summary of Aquifer Classifications & Characteristics : Site Walkover Summary : Summary of Groundwater Encountered : Laboratory Testing : Partial Factors used to Derive Design Parameters	6 10 15 16 20
Tabl Tabl Tabl Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1: e 4.2: e 6.1: e 6.2: e 6.3:	: Groundwater Vulnerability : Summary of Aquifer Classifications & Characteristics : Site Walkover Summary : Summary of Groundwater Encountered : Laboratory Testing : Partial Factors used to Derive Design Parameters : Characteristic Parameters for Materials : Design Parameters for Materials	
Tabl Tabl Tabl Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1: e 4.2: e 6.1: e 6.2: e 6.3:	: Groundwater Vulnerability : Summary of Aquifer Classifications & Characteristics : Site Walkover Summary : Summary of Groundwater Encountered : Laboratory Testing : Partial Factors used to Derive Design Parameters	
Tabl Tabl Tabl Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1: e 4.2: e 6.1: e 6.2: e 6.3: e 7.1:	: Groundwater Vulnerability : Summary of Aquifer Classifications & Characteristics : Site Walkover Summary : Summary of Groundwater Encountered : Laboratory Testing : Partial Factors used to Derive Design Parameters : Characteristic Parameters for Materials : Design Parameters for Materials	
Tabl Tabl Tabl Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1: e 4.2: e 6.1: e 6.2: e 6.3: e 7.1:	Groundwater Vulnerability Summary of Aquifer Classifications & Characteristics Site Walkover Summary Summary of Groundwater Encountered Laboratory Testing Partial Factors used to Derive Design Parameters Characteristic Parameters for Materials Design Parameters for Materials Turbine Foundation Summary	
Tabl Tabl Tabl Tabl Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1: e 4.2: e 6.1: e 6.2: e 6.3: e 7.1:	Groundwater Vulnerability Summary of Aquifer Classifications & Characteristics Site Walkover Summary Summary of Groundwater Encountered Laboratory Testing Partial Factors used to Derive Design Parameters Characteristic Parameters for Materials Design Parameters for Materials Turbine Foundation Summary FAPPENDICES A: Figures B: Slope Stability Assessment	
Tabl Tabl Tabl Tabl Tabl Tabl Tabl Tabl	e 2.1: e 2-2: e 3.1: e 4.1: e 4.2: e 6.1: e 6.2: e 6.3: e 7.1: T OF endix endix endix	Groundwater Vulnerability Summary of Aquifer Classifications & Characteristics Site Walkover Summary Summary of Groundwater Encountered Laboratory Testing Partial Factors used to Derive Design Parameters Characteristic Parameters for Materials Design Parameters for Materials Turbine Foundation Summary APPENDICES A: Figures	

P20-099 www.fehilytimoney.ie — iii / iii

1. INTRODUCTION

1.1 General

Coom Green Energy Park Limited (CGEPL) is applying to An Bord Pleanála for consent for the proposed Coom Green Energy Park (CGEP) in County Cork. Subject to consent being granted the CGEP will be constructed by CGEP in partnership with Coillte Teoranta (Coillte). The proposed energy park is located approximately 12km to the south east of Mallow and approximately 13 km west of Fermoy in County Cork.

The proposed turbines are located in proximity to the Bottlehill Landfill site approximately 12km south east of Mallow, and at the Nagles Mountains, approximately 5km south west of Ballyhooly, County Cork. The proposed Coom Green Energy Park site includes lands contained within the following townlands: Glashaboy North, Coom (Hudson), Tooreen South, Killeagh, Coom (Fitzgerald), Slievedotia, Mullenaboree, Knoppoge, Carrig, Knuttery, Lackendarragh North, Knockacullata, Knockdoorty, and Glannasack, County Cork.

The general site layout of the site is shown in Figure 1.1 in Appendix 1.

1.1 Details of Proposed Works

The proposed project will primarily consist of a wind farm of up to 22 no. wind turbine generators (WTG's), up to 2 no. substation compounds and a battery energy storage system along with ancillary civil and electrical infrastructure.

The associated grid connection route (GCR) will consist entirely of underground cable and will connect the onsite substations to an existing 110kV substation at Barrymore, within the townland of Farran South near Rathcormac. The GCR will be ca.24.4km in length, with ca. 16.7km to be constructed within the existing road corridor. The 110kV grid connection cable will follow public roads and shall feature horizontal directional drilling (HDD) at up to 4 no. locations to cross existing watercourses and the M8 motorway.

1.2 Scope and Project Objectives

Fehily Timoney and Company (FT) were engaged by CGEP to undertake a geotechnical assessment of the proposed wind farm site with respect to slope and peat stability. An assessment of proposed borrow pit locations for the extraction of site won fill material was also required.

This study was carried out in accordance with Eurocode 7: Part 2 (NSAI, 2007). In addition to the Eurocode 7 guidance, the peat stability assessment was undertaken in accordance with the Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (PLHRA, 2017).

The Peat Hazard and Risk Assessment is used in this report as it provides best practice methods to identify, mitigate and manage peat slide hazards and associated risks in respect of consent applications for electricity generation projects. The scope of this report included the investigation and reporting on the following information:

- Site details including location, present use, proposed use etc.
 - Site Geology (bedrock, superficial deposits and made ground)
 - Site Hydrogeology
 - Site Hydrology

P20-099 www.fehilytimoney.ie — Page 1 of 28

- Any site-specific requirements
- A summary of the intrusive site investigations completed at the site

The study includes the following interpretative elements:

- Interpretation of the findings of the site walkovers, non-intrusive and intrusive site investigations
- Details of site constraints which may affect proposed site layout and engineering options.
- List of potential hazards at the site arranged into a Design Risk Register which will highlight any topographic, geological or man-made hazards in the area and potential mitigation measures to be taken during the next stages of the project.

P20-099 www.fehilytimoney.ie — Page 2 of 28

2. DESK STUDY

Prior to undertaking the site walkover and intrusive site investigations, a desk study was undertaken to help determine the baseline conditions within the study area and planning boundary to provide relevant background information. The desk top study involved an examination of the following sources of information:

- OSI (2020), Current and historic Ordnance Survey Ireland mapping and ortho-photography.
- Taluntais (1980), General Soil Map of Ireland
- Geological Survey of Ireland (2020) GSI Public Data Viewer (www.spatial.dcenr.gov.ie)
- Environmental Protection Agency (2020) Review of the EPA online mapping (http://gis.epa.ie/Envision).
- Study of the proposed layout of the development.

To determine the existing hydrogeological regime within the study area the following EPA and GSI online datasets and mapping from the sources outlined above were reviewed:

- Catchment & Management Units;
- Groundwater Bodies Status and Risk;
- Drinking Water Protection Areas;
- Groundwater Resources (Aquifers);
- Groundwater Wells and Springs;
- Karst Features; and
- Groundwater Vulnerability

2.1 Geology

2.1.1 Quaternary Deposits

The Quaternary Geology underlying the proposed CGEP is discussed below and presented in Figure 2.1. The subsoils present within the development site and wider study area were taken from the Geological Survey of Ireland (GSI) online mapping - Quaternary Geology of Ireland (1:50,000 scale) and comprise:

- Till derived from Devonian Sandstones (TDSs);
- Bedrock outcrop or sub-crop (Rck);
- Limited extent of blanket peat (BktPt).

As shown in Figure 2.1 the majority of turbine location and associated infrastructure are located within areas classified as Glacial Till derived from Devonian Sandstones. Areas of bedrock outcrop or sub crop are identified at locations T2, T14, T20 and T21.

The majority of the proposed grid connection route is underlain by Till derived from Devonian Sandstones with limited areas of bedrock sub-crop or outcrop indicated along the proposed route.

During site walkovers areas of shallow Peat/Peaty Topsoil deposits were noted to be limited in extent and thin with typical thicknesses of between 0.1 - 0.4m. At proposed turbine location T4 Blanket Peat deposits were encountered with an average depth of 0.4m and a maximum depth of 0.5m.

P20-099 www.fehilytimoney.ie — Page 3 of 28

2.1.2 Solid Geology

The Geological Survey of Ireland (GSI) 1:100,000 scale bedrock geology map shows that the proposed wind farm development site is underlain by the Devonian Ballytrasna Formation.

The Ballytrasna Formation is described as comprising dusky-red mudstone with subordinate pale-red sandstones occurring throughout the formation.

The bedrock geology that is within the proposed wind farm site forms an anticlinal feature as it is part of the regional folding in the Devonian rocks between the Mallow and Cork anticline. There is one main unnamed fault close to the proposed development site running in a northeast – southwest direction. Other faults in the surrounding area either follow this trend or run in a north – south direction.

The proposed grid connection route traverses the Ballytrasna Formation, as described above for the majority of the route. The eastern extent of the grid connection is underlain by the Gyleen and Waulsortian Formations. The Upper Devonian Gyleen Formation is described by the GSI as comprising of fining upwards sequences of red Sandstones with thinly bedded alternations of green and red Sandstones, Siltstones and Mudstones. The Carboniferous Waulsortian Formation is described by the GSI as comprising massive un-bedded lime-mudstone.

The bedrock geology of the proposed CGEP and surrounding area is presented in Figure 2.2.

During site investigations weathered bedrock was encountered at depths ranging from 1.3m to 2.8m BGL. Intact bedrock was encountered at between 3.4m to 10.8m BGL. Where intact bedrock was encountered it was generally described as medium strong to strong thinly bedded SILTSTONE.

2.2 Hydrogeology

2.2.1 Groundwater Vulnerability

The Groundwater Vulnerability within the proposed CGEP boundary is classified by the GSI as ranging from 'High' to 'Extreme' with areas of exposed bedrock (X – Rock Near Surface) also present within the proposed development site. At the eastern extent of the proposed grid connection the vulnerability classification is reduced to 'Moderate'. The GSI distribution of groundwater vulnerability for the site area is shown in Figure 2.3 in Appendix 1.

Based on the GSI aquifer vulnerability mapping, overburden deposits are generally between 3 and 10 m deep in the central portion of the site; generally, 3 to 5 m deep in the north, east and south-east of the site; and <3m deep in the extreme west and north east of the site.

A summary of the groundwater vulnerability for the site is presented in Table 2.1. This table outlines the standard ratings of vulnerability used by the GSI, with the existing site conditions highlighted based on the findings of the site investigations.

Table 2.1: Groundwater Vulnerability

Hydrogeological Conditions	
----------------------------	--

P20-099 www.fehilytimoney.ie — Page 4 of 28

Vulnerability	Subsoil Permeability (Type) and Thickness					
Rating	High Permeability	Moderate Permeability	Low Permeability			
	(sand/gravel)	(sandy soil)	(clayey subsoil, clay, peat)			
Extreme (E)	0 - 3.0 m	0 - 3.0 m	0 - 3.0 m			
High (H)	> 3.0 m	3.0 -10.0 m	3.0 - 5.0 m			
Moderate (M)	N/A	>10.0 m	5.0 - 10.0 m			
Low (L)	N/A	N/A	>10 m			

2.2.2 Groundwater Bodies Description

The proposed wind farm site and the majority of the proposed gird connection of the CGEP is located within the Glenville Groundwater Body (GWB). The eastern extremity of the proposed grid connection route traverses the Tallow GWB as shown in Figure 2.4.

The descriptions of the GWBs within the study area have been taken from the 'Summary of Initial Characterisation' draft reports for each defined GWB published by the GSI in accordance with the Groundwater Working Group Publication: Guidance Document GW2 (2003). The GWB Characterisation Reports are available from the GSI Public Data Viewer. Site specific data including depth to bedrock and subsoil type encountered during intrusive investigations has been used to supplement and validate the published information.

Ballinhassig GWB

The Ballinhassig GWB which underlies the access road to the Bottlehill landfill site adjacent to the CGEP development covers the upland areas of the River Lee catchments and its tributaries.. This GWB is bounded to the north by the Glenville GWB which is discussed in the following section. The dominant bedrock units of this GWB comprise the Devonian Old Red Sandstones which includes the Ballytrasna Formation which underlies much of the study area.

The GSI indicate that permeability within the GWB generally decreases rapidly with depth in all aquifers within this GWB. Aquifer categories within the Ballinhassig GWB are either Locally Important or Poor Aquifers. General transmissivities are reported by the GSI to be 'Low'. However, 'Excellent' yielding wells known in some of the Old Red Sandstone units – these yields are usually associated with boreholes being situated on fault zones.

Diffuse recharge will occur via rainfall percolating through the subsoil or areas of outcropping rock. The generally Low permeability of the aquifer and the sloping topography in the north of the GWB indicate that a high proportion of recharge to the aquifer will discharge rapidly to surface water features. Groundwater flow paths to surface water within the GWB are relatively short (from 30-300 m), with groundwater discharging to springs, or to the streams that traverse the aquifer.

Glenview GWB

Due to the general absence of intergranular permeability within the underlying Ballytrasna Formation, groundwater flow generally occurs in faults and joints within this GWB. The majority of the groundwater flow generally occurs in an upper, shallow weathered zone. This is due to the lesser frequency and connectivity of water-bearing fractures and fissures at depth within the GWB.

P20-099 www.fehilytimoney.ie — Page 5 of 28

The main recharge mechanism for the GWB is via diffuse recharge from rainwater percolating through the subsoils. According to the GSI, groundwater within this GWB is generally unconfined with local groundwater flow towards the rivers and streams, and flow paths will not usually exceed a few hundred metres in length.

Tallow GWB

The Tallow GWB is classified as a Regionally Important Karstified Aquifer (Rkd) dominated by diffuse flow, underlying the eastern extent of the proposed grid connection route. The main aquifer lithology in this GWB is Dinantian Pure Unbedded Limestones (Waulsortian Limestone Formation) as shown in Figure 2.4. The bedrock aquifer is generally devoid of intergranular permeability with groundwater flow occurring in faults and joints, enlarged by karstification. Due to the high frequency of fissures in this GWB, overall groundwater flow is thought to be of a diffuse nature.

Sandstone ridges within the adjacent Glenview GWB provide surface water runoff which recharges the aquifer lithologies within the Tallow GWB. According to the GSI a small volume of groundwater may cross as throughflow from the sandstones in the Glenview GWB. Recharge within the Tallow GWB is via point and diffuse recharge.

Karst features such as swallow holes and collapse features provide the means for point recharge to the underlying aquifer. Diffuse recharge occurs across the entire GWB via rainfall percolating through the subsoil.

The GSI classifications for the aquifer in the study area, including the principal aquifer characteristics are summarised in Table 2.2, and shown on Figure 2.5. All aquifers in the study area are bedrock aquifers; there are no gravel aquifers within the study area (i.e. a gravel deposit of greater than 1 km² with a saturated thickness of greater than 5 m).

Table 2-2: Summary of Aquifer Classifications & Characteristics

Groundwater Body	European Code	Aquifer Name	GSI Aquifer Classification	Status	Transmissivity (m²/day)
Ballinhassig	! IE_SW_G_005	Unnamed	Locally important aquifer- bedrock which is moderately productive only in local zones	Good	Typically, 2- 20 m²/d
Glenville	IE_SW_G_037	Unnamed	Locally important aquifer- bedrock which is moderately productive only in local zones	Good	2- 20 m²/d
Tallow	IE_SW_G_074	Unnamed	Regionally Important Karstified Aquifer	Good	270 – 1820 m²/d

P20-099 www.fehilytimoney.ie — Page 6 of 28

According to interim classification work carried out as part of the Water Framework Directive and published by the EPA, the Ballinhassig, Glenville and Tallow GWBs are classified as having 'Good' status in terms of quality and quantity. The overall risk for both GWBs is under review by the EPA with regards to groundwater quality.

P20-099 www.fehilytimoney.ie — Page 7 of 28

Coom Green Energy Park Ltd. CLIENT: **Geotechnical Assessment Report**

PROJECT NAME: Coom Green Energy Park REPORT:

SITE WALKOVER

As part of the geotechnical assessment and peat stability assessment site walkovers were carried out by FT during June and August 2019, and also during August 2020. The objective of the site walkovers was to determine the baseline characteristics of the proposed wind farm site with the CGEP development. This included the recording of salient geomorphological features with respect to the wind farm development and to investigate peat thickness and peat strength where peat deposits were encountered.

The survey covered the proposed locations for the turbine bases, substation, met mast, construction compounds, existing and proposed new access roads and all associated infrastructure.

The method adopted for carrying out the site walkover relied on practitioners carrying out a visual assessment of the site supplemented with measurement of slope inclinations.

3.1 General

As outlined above, site walkovers were carried out by FT during June and August 2019 and August 2020. The method adopted for carrying out the site walkovers relied on practitioners carrying out a visual assessment of the site supplemented with recording of slope inclinations.

The peat stability assessment included a series of hand-held probes proposed infrastructure locations to determine the presence/depth of peat within the proposed development site. Visual observations were also made to assess the stability of other soil slopes and rock exposures across the site.

The main findings of the site walkovers within the wind farm site are as follows:

The slopes of the southern portion of the proposed development site (Bottlehill) are characterised by elevated lands with typical elevations of between 270m to 290m AOD with steep to moderate slopes to the west of the site boundary. Slopes within the proposed development and at proposed infrastructure locations generally comprise gentle slopes of between 1.7 to 3.4 degrees.

The central portion of the site (Mullenaboree) is also characterised by elevated lands with gentle slopes within the proposed development boundary of between 1.7 to 3.4 degrees at turbine locations T11 to T16. Elevations at this portion of the proposed development are generally lower than those at the south with typical elevations of between 220m to 260m AOD.

The northern portion of the proposed development (Knockdoorty) which includes turbine locations T17 to T23, proposed borrow pit BP03 and the proposed Lackendarragh North sub-station comprises elevated lands generally sloping steeply to the south. A ridge feature at the extreme northern boundary of the proposed development trends east-west and reaches maximum elevations of between 424m and 428m AOD to the north of turbines T21 and T23 respectively.

Slopes at proposed turbine locations in this portion of the development range from gentle (3.4 degrees) to moderate where maximum slope angles of 10.2 degrees at turbines T20 and T22 to 14.5 degrees at T21. These turbines are located along the east-west ridge at the north of the proposed development. Slopes at the proposed borrow pit BPO3 are typically in the order of 6 degrees sloping the south-east.

P20-099 www.fehilytimoney.ie -Page 8 of 28

Soft Peaty Topsoil deposits were noted at other proposed infrastructure locations, but these were generally very thin (0.1 to 0.6m thick) and were not considered to constitute Peat Deposits but rather a highly organic Topsoil with Peaty appearance.

No evidence of past failures or any signs of peat instability were noted on site.

No evidence of slope instability in other soil or rock slopes was observed at the site and there are no historical records of landslide activity within or close to the site, on the GSI database.

The forested areas, which comprise the majority of the proposed development site have been planted predominantly with conifers with some deciduous regrowth in marginal areas of the forestry plantations. Ground conditions within the forested areas typically comprise thin cover of soft organic Topsoil or peaty Topsoil over Mineral Soil and Glacial Till.

The underlying Mineral Soils and Glacial Till were occasionally exposed at the ground surface in the felled and forested areas. In agricultural lands soil exposures indicated a dark brown mineral soil. Weathered bedrock exposures were noted in existing cuttings associated with forestry access tracks at the northern portion of the proposed development site (Knockdoorty). The weathered bedrock exposures encountered were generally described as *Moderately weathered, medium strong to strong, MUDSTONE/SHALE*.

From site walkovers completed by FT it was noted all existing Coillte access tracks on site have been constructed using a founded construction method based on observations made during site walkovers. The access tracks for the proposed development will comprise upgrading of existing founded access tracks and construction of new proposed access tracks using excavate and replace construction techniques.

A total of 3 no. proposed borrow pit locations were inspected during the site walkover. The location of the proposed borrow pits are shown on Figure 1.1 in Appendix A. The borrow pits will be used to provide suitable cohesive/granular Fill material during construction of the proposed development. On visual inspection of a limited number of exposed ground conditions on site, the site won Fill material is likely to be suitable for re-use within the lower layers of access roads, hardstands and soil Fill to turbine foundations.

A summary of the information obtained during the field assessments is provided below in Table 3.1 over.

P20-099 www.fehilytimoney.ie — Page 9 of 28

Table 3.1: Site Walkover Summary

Proposed Infrastructur e	Land use	Quaternar y Deposits (GSI Online Mapping)	Ground conditions encountere d	Average Peat Depth (m)	Slope (degrees)	Depth to Bedrock (m) from Site Investigation S	Groundwate r Vulnerability (GSI Online Mapping
Т02	Mature Forestry	Bedrock outcrop or sub-crop	Soft Peaty Topsoil with gentle to level topography	0.3 (Peaty Topsoil)	2	4.5m	X – Rock Near Surface
Т03	Immature Forestry	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle topography	0.3 (Peaty Topsoil)	4	2.5m	High to Extreme
T04	Mature Forestry	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle topography	0.3m	2	6.4 - 12.5m	Extreme
T05	Mature Forestry	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle to level topography	0.4m (Peaty Topsoil)	3	5.0 - 7.5m	High to Extreme
Т06	Mature Forestry	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle to level topography	0.3m (Peaty Topsoil)	4	3.5 - 4.5m	High
Т07	Mature Forestry	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle to level topography	0.6m (Amorphous Peat with silt laminations)	2	3.0m	Extreme
Т08	Agricultura I Land (Grassland)	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to level topography	None Present	2.2	6.0m	High to Extreme
Т09	Felled forestry lands	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle topography	None Present	3.4	2.5m	High
Т10	Edge of mature forestry and agricultural land	Till derived from Devonian sandstones	Grassland with Loamy Topsoil, level topography	None Present	1.7	3.4 - 7.0m	High
T11	Agricultura I Land (Grassland)	Till derived from Devonian sandstones	Grassland with Loamy Topsoil, level topography	None Present	1.7	2.4m	High
T12	Mature Forestry	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle topography	None Present	1.1	5.0m	High
T13	Felled forestry lands	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle to level topography	0.2m (Peaty Topsoil)	1.7	2.7m	High
T14	Mature Forestry	Bedrock outcrop or sub-crop	Soft Organic Topsoil with gentle topography	None Present	2.2	4.8m	X – Rock Near Surface
T15	Mature Forestry	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle topography	None Present	3.4	4.0 - 10.0m	High
T16	Mature Forestry	Till derived from	Soft Organic Topsoil with	None Present	3.4	4.5	High

P20-099 www.fehilytimoney.ie — Page 10 of 28

ī		•			1	•	
		Devonian sandstones	gentle topography				
T17	Mature Forestry	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to moderately sloping topography	None Present	3.4	2.0 - 4.5m	High
T18	Mature Forestry	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to moderately sloping topography	None Present	4	8.0m	High
T19	Mature Forestry	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to moderately sloping topography	None Present	5	5.6m	High
Т20	Mature Forestry	Bedrock outcrop or sub-crop	Soft Organic Topsoil with gentle to moderately sloping topography	None Present	10.2	3.4 - 10.0m	X – Rock Near Surface
T21	Mature Forestry	Bedrock outcrop or sub-crop	Soft Organic Topsoil with gentle to moderate to steep slopes	None Present	14.5	10.0m	X – Rock Near Surface
T22	Mature Forestry	Bedrock outcrop or sub-crop	Soft Organic Topsoil with gentle to moderate to steep slopes	None Present	10.2	4.0m	Extreme to X – Rock Near Surface
T23	Mature Forestry	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to moderate slopes	None Present	5	8.6m	Extreme
BP1	Young Forestry	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle slopes	None Present	3	2.5-2.7m	Extreme
BP2	Mature Forestry	Till derived from Devonian sandstones	Exposed Mineral Soil with gentle slopes	None Present	3	2.0 – 2.8m	High
BP3	Mature Forestry	Bedrock outcrop or sub-crop	Exposed Mineral Soil with moderate slopes	None Present	6	NP	Extreme
Lackendarragh North Substation	Mature Forestry	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle slopes	-	3	-	High
Temporary Compound (South)	Young Forestry	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle slopes	0.2m (Peaty Topsoil)	3	-	Extreme
Temporary Compound (North)	Mature Forestry	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle slopes	-	3	-	Extreme

P20-099 www.fehilytimoney.ie — Page 11 of 28

4. GROUND INVESTIGATIONS

Intrusive and non-intrusive site investigations were undertaken by Irish Drilling Ltd (IDL) and Minerex Environmental Ltd under the supervision of an Engineering Geologist from FT in June to October 2019 with additional works undertaken in October and November 2020.

The scope of the site investigations is summarised below with the information obtained referenced in this chapter:

- Advancement of 18 No. trial pits to a maximum depth of 4.4m below ground level (BGL) at proposed borrow pit locations and selected turbine locations.
- Advancement of 3 No. cable percussive/rotary boreholes to a maximum depth of 15m BGL at proposed horizontal directional drilling (HDD) locations at water crossings locations W06, W08 and W19 along the proposed grid connection route.
- Collection of samples for environmental and geotechnical testing.
- Seismic Refraction Profiling, 2D Electrical Resistivity (ERT) surveying and Seismic Refraction (P-Wave) along pre-designated transects at proposed turbine locations.

The ground investigation was carried out in accordance with the principles in BS 5930:2015 and Eurocode 7 Part 2. A ground investigation location plan showing all trial pit and borehole locations is included as Figure 4.1 in Appendix A of this report.

4.1 Summary of Ground Conditions Encountered

The following section describes the ground conditions encountered during ground investigation completed at the proposed watercourse crossing locations, selected proposed turbine locations and proposed borrow pit locations. A summary of the findings of the geophysical surveys completed at each of the proposed turbine locations is also included below.

4.1.1 Proposed HDD Watercourse crossing Locations

At the proposed water crossing WC006, borehole RC01 encountered Made Ground below the asphalt layer within the existing public road to a maximum depth of 2.0m BGL. This was described as comprising *Subangular fine Limestone GRAVEL*. This was underlain by a thin layer of overburden described as comprising Clay & Gravel to a maximum depth of 2.6m BGL.

Underlying the Made Ground and overburden deposits Weathered Bedrock was encountered between 2.6m and 3.4m BGL and was described as Weathered SILTSTONE. This was recovered in the borehole arising as Angular fine to coarse gravel sized clasts of purple SILTSTONE with purple SILT.

Competent bedrock was encountered at 3.4m BGL to the maximum depth of RC01 at 7.5m BGL. The bedrock recovered in RC01 comprised *Strong locally medium strong thinly bedded purple fine-grained SILTSTONE*. Between 3.80m to 3.90m BGL and 4.50m to 4.60m BGL weathered infill material comprising Firm *purple SILT* was noted in recovered core.

Borehole RC02 was advanced at HDD crossing WC007 to a maximum depth of 14.2m BGL. Overburden deposits were encountered below the thin asphalt layer (0.03m) within the existing public road. These deposits

P20-099 www.fehilytimoney.ie — Page 12 of 28

comprised Sub-rounded to sub-angular fine to coarse assorted grey limestone and grey purple and dark brown sandstone GRAVEL to 10.8m BGL. The Gravel deposits were underlain by bedrock described as Medium strong thinly bedded greenish brown slightly sandy fine-grained SILTSTONE.

Weathered infill material was noted between 12.50m to 12.60m BGL and 13.60m to 14.20m BGL. This infill material was described as *greyish green slightly gravelly SILT* and *grey/green SAND* respectively.

Borehole RC03 was advanced at proposed HDD crossing location WC019 to a maximum depth of 15.0m BGL. Made Ground was encountered to 0.8m BGL and comprised Asphalt (0.2m) underlain by *Angular fine and medium purple siltstone GRAVEL with purple SILT*. This was underlain by a gravel horizon at 7.3m BGL which was described as *Subangular to sub-rounded fine to coarse assorted grey limestone and assorted grey and brown sandstone GRAVEL with pink brown SILT*. This horizon was encountered the maximum depth of exploration at 15.0m BGL. Gravel deposits were generally Medium Dense becoming Dense at 12.5m BGL.

4.1.2 Proposed Borrow Pit Locations

Exploratory trial pits were advanced at proposed borrow pit locations BP01, BP02 and BP03 to assess potential for use of site won materials as general Fill material for the construction of elements of the proposed development. Geotechnical and environmental samples were also collected from trial pits with the results discussed in Section 4.2 of this report.

A total of 2 No. trial pits (BP-TP01 and BP-TP02) were advanced at BP01 to a maximum depth of 2.7m BGL where bedrock obstruction was encountered.

The ground profile at BP01 generally comprised granular overburden deposits typically comprising slightly sandy silty gravelly Cobbles. Bedrock was encountered in each trial pit advanced at BP01 at depths of 2.5m to 2.7m BGL.

A total of 4 No. trial pits (BP2-TP01, BP2-TP02, BP2-TP03 and BP2-TP04) were advanced at BP02 to a maximum depth of 2.9m BGL where bedrock obstruction was encountered. The ground profile at BP02 generally comprised thin cover deposits comprising thin Peat cover at BP2-TP03 (0.3m thick), firm orange and purplish brown SILT with cobbles and Made Ground to a maximum depth of 1.1m BGL.

These deposits were underlain by granular overburden deposits typically clayey sandy subangular medium to coarse GRAVEL with high Cobble content and slightly silty sandy gravelly subangular siltstone COBBLES.

SILTSTONE bedrock was encountered in each trial pit advanced at BP02 at depths of between 2.0m to 2.8m BGL. Where the SILTSTONE encountered was weathered it was typically recovered from the trial pits as *angular* and blocky Cobble and Boulder sized clasts of SILTSTONE.

A total of 2 No. trial pits (BP3-TP01 and BP3-TP03) were advanced at BP03 to a maximum depth of 3.9m BGL. At trial pit BP3-TP01 peaty silty TOPSOIL was encountered to 0.6m BGL where it overlies Firm yellow/brown slightly sandy SILT with rootlets to 1.1m BGL. Below 1.0m BGL a Stiff purplish brown slightly gravelly sandy CLAY with high Cobble content and medium Boulder content was encountered to 3.8m BGL where obstruction from Boulders was encountered.

Trial pit BP3-TP03 was advanced to a depth of 3.9m BGL. Here a *Stiff orange/brown and purple/brown gravelly SILT with high Cobble content and medium Boulder content* was encountered between 0.9m to 3.9m BGL. These SILT deposits were overlain by a *Stiff orangish brown CLAY with low Cobble content* was encountered from ground level to 0.9m BGL.

P20-099 www.fehilytimoney.ie — Page 13 of 28

comprised Sub-rounded to sub-angular fine to coarse assorted grey limestone and grey purple and dark brown sandstone GRAVEL to 10.8m BGL. The Gravel deposits were underlain by bedrock described as Medium strong thinly bedded greenish brown slightly sandy fine-grained SILTSTONE.

Weathered infill material was noted between 12.50m to 12.60m BGL and 13.60m to 14.20m BGL. This infill material was described as *greyish green slightly gravelly SILT* and *grey/green SAND* respectively.

Borehole RC03 was advanced at proposed HDD crossing location WC019 to a maximum depth of 15.0m BGL. Made Ground was encountered to 0.8m BGL and comprised Asphalt (0.2m) underlain by *Angular fine and medium purple siltstone GRAVEL with purple SILT*. This was underlain by a gravel horizon at 7.3m BGL which was described as *Subangular to sub-rounded fine to coarse assorted grey limestone and assorted grey and brown sandstone GRAVEL with pink brown SILT*. This horizon was encountered the maximum depth of exploration at 15.0m BGL. Gravel deposits were generally Medium Dense becoming Dense at 12.5m BGL.

4.1.2 Proposed Borrow Pit Locations

Exploratory trial pits were advanced at proposed borrow pit locations BP01, BP02 and BP03 to assess potential for use of site won materials as general Fill material for the construction of elements of the proposed development. Geotechnical and environmental samples were also collected from trial pits with the results discussed in Section 4.2 of this report.

A total of 2 No. trial pits (BP-TP01and BP-TP02) were advanced at BP01 to a maximum depth of 2.7m BGL where bedrock obstruction was encountered.

The ground profile at BP01 generally comprised granular overburden deposits typically comprising slightly sandy silty gravelly Cobbles. Bedrock was encountered in each trial pit advanced at BP01 at depths of 2.5m to 2.7m BGL.

A total of 4 No. trial pits (BP2-TP01, BP2-TP02, BP2-TP03 and BP2-TP04) were advanced at BP02 to a maximum depth of 2.9m BGL where bedrock obstruction was encountered. The ground profile at BP02 generally comprised thin cover deposits comprising thin Peat cover at BP2-TP03 (0.3m thick), firm orange and purplish brown SILT with cobbles and Made Ground to a maximum depth of 1.1m BGL.

These deposits were underlain by granular overburden deposits typically clayey sandy subangular medium to coarse GRAVEL with high Cobble content and slightly silty sandy gravelly subangular siltstone COBBLES.

SILTSTONE bedrock was encountered in each trial pit advanced at BP02 at depths of between 2.0m to 2.8m BGL. Where the SILTSTONE encountered was weathered it was typically recovered from the trial pits as *angular* and blocky Cobble and Boulder sized clasts of SILTSTONE.

A total of 2 No. trial pits (BP3-TP01 and BP3-TP03) were advanced at BP03 to a maximum depth of 3.9m BGL. At trial pit BP3-TP01 peaty silty TOPSOIL was encountered to 0.6m BGL where it overlies Firm yellow/brown slightly sandy SILT with rootlets to 1.1m BGL. Below 1.0m BGL a Stiff purplish brown slightly gravelly sandy CLAY with high Cobble content and medium Boulder content was encountered to 3.8m BGL where obstruction from Boulders was encountered.

Trial pit BP3-TP03 was advanced to a depth of 3.9m BGL. Here a *Stiff orange/brown and purple/brown gravelly SILT with high Cobble content and medium Boulder content* was encountered between 0.9m to 3.9m BGL. These SILT deposits were overlain by a *Stiff orangish brown CLAY with low Cobble content* was encountered from ground level to 0.9m BGL.

P20-099 www.fehilytimoney.ie — Page 13 of 28

4.1.3 Proposed Turbine Locations

Exploratory trial pits were advanced at selected proposed turbine locations T13, T20, T22 and T23 based on potential ground risks from moderate slopes noted during site walkovers. Trial pits were also excavated at T3, T6 and T7. Geotechnical and environmental samples were also collected from trial pits with the results discussed in Section 4.2 of this report.

At proposed turbine location T3 trial pit TP-T03 was advanced to a maximum depth of 4.4m. The ground conditions comprised thin peaty topsoil (0.3m thick) overlying a *stiff grey slightly gravelly sandy Silt* to 4.0m BGL. Between 4.0m and 4.4m BGL a *light grey slightly gravelly silty SAND* was recorded.

At proposed turbine location T6 trial pit TP-T06 was advanced to a maximum depth of 3.0m where an obstruction was encountered, recorded as angular to tabular clay smeared cobbles of SILTSTONE. The ground conditions comprised Made Ground, described as a black peaty silt mixed with stiff orange brown sandy gravelly silt to a depth of 2.0m BGL. Between 2.0m and 2.4m BGL a stiff orange brown slightly sandy slightly gravelly SILT was recorded. This overlay weathered bedrock at 2.4m BGL which was described as angular to tabular clay smeared cobbles of SILTSTONE.

At proposed turbine T7 trial pit TP-T07 was advanced to a maximum depth of 4.0m BGL. The ground conditions encountered comprised thin peaty topsoil (0.6m thick) overlying a stiff brown sandy SILT to a depth of 1.3m BGL. This was underlain by a *grey silty gravelly SAND* to 4.0m BGL.

At proposed turbine location T13 trial pit TP-T13 was advanced to a maximum depth of 2.7m BGL where an obstruction was encountered from the presence of SHALE/MUDSTONE bedrock at 2.7m BGL. The ground conditions encountered at T13 comprised thin Peat cover (0.2m thick) overlying a *Firm brown slightly sandy SILT* to 0.6m BGL.

Between 0.6m to 2.0m BGL SAND and GRAVEL deposits were encountered which in turn overlaid Weathered Bedrock at 2.0m BGL which was described as SHALE/MUDSTONE and recovered from the trial pit as angular Cobbles of SHALE/MUDSTONE with Clay.

At proposed turbine T20 Weathered Bedrock was encountered at 1.3m BGL which was described as angular flat and tabular gravel and cobbles of SHALE/MUDSTONE. The trial pit was terminated at 4.0m BGL where obstruction due to competent bedrock was encountered. The Weathered Bedrock was overlain by a *Stiff purple CLAY with high Cobble content* between 0.6m to 1.3m BGL. This was overlain by a *Firm purple/brown slightly gravelly SILT* encountered from ground level to 0.6m BGL.

At proposed turbine location T22 trial pit TP-T22 was advanced to a maximum depth of 4.0m BGL where an obstruction was encountered from the presence of SHALE/MUDSTONE Bedrock at this depth. The ground conditions encountered at T22 comprised thin Peat cover (0.3m thick) overlying a *Soft orange/brown sandy SILT* to 1.2m BGL. Between 1.2m and 1.9m BGL GRAVEL deposits were encountered which in turnover laid Weathered Bedrock at 1.9m BGL which was described as SHALE/MUDSTONE and recovered from the trial pit as flat and angular cobbles of SHALE/MUDSTONE.

At proposed turbine location T23 trial pit TP-T23 was advanced to a maximum depth of 4.3m BGL. The ground conditions encountered at T23 comprised a *Stiff purple slightly sandy CLAY with low Cobble content* to 0.35m BGL. This was underlain by a *Purple/orange silty gravelly fine to coarse SAND with low Cobble content* to 0.9m BGL. Between 0.9m to 3.2m BGL SAND and GRAVEL deposits described as *Purple silty fine to medium SAND and sub-rounded fine to medium GRAVEL with low Cobble content* were encountered. These were underlain by a *Stiff purple slightly sandy slightly gravelly CLAY with medium Cobble content and low Boulder* content to the maximum depth of excavation at 4.3m BGL.

P20-099 www.fehilytimoney.ie — Page 14 of 28

4.1.4 Geophysical Surveys

Geophysical survey works consisting of a 2D-Resistivity and Seismic Refraction Profile centred on the proposed turbine locations was completed by Minerex Geophysics Ltd (MXL). At the proposed turbine locations a 2D-Resistivity and a seismic refraction profile was completed. At the majority of the turbines the survey transect was centred with the proposed turbine location completed.

Each 2D-Resisitivity profile had 32 electrodes with a 3m spacing to give 93m length per profile while each seismic refraction profile was carried out using a 2m spacing and 24 geophones, giving a 46m long profile. The findings of the geophysical survey are presented in Appendix 4 of this document. A summary of the findings is presented below with the interpreted depth to bedrock outlined above in Table 3.1 at locations where no intrusive investigations were completed.

The findings of the 2D-Resistivity survey identified a range of typical resistivity values for materials at all proposed turbine locations. These ranged from clay rich overburden or peat (low resistivities) to fresh strong un-weathered bedrock (high resistivities). Within overburden layers, low resistivity values (<250 Ohmm) typically indicates sandy gravelly clay and silt. Medium values (250 to 1000 Ohmm) show a clayey silty Sand and Gravel. High resistivities (>1000 Ohmm) indicate a clean sand and gravel overburden. Within bedrock layers, low resistivities indicate Mudstone, medium resistivities are interpreted as interbedded Mudstone and Sandstone while high resistivities indicate Sandstone bedrock.

The seismic refraction survey was also used to estimate the density of subsurface materials. The higher the density of the subsurface materials, the higher the seismic velocity. A total of 7 no. seismic layers have been determined by analysing the seismic traces. The resulting seismic layer boundaries are then overlain on the 2D-Resistivity cross sections to give a profile of estimated material density at each turbine location. A full interpretation of the geophysical survey results and associated cross sections and profiles is presented in Appendix C.

4.1.5 **Groundwater Encountered**

Groundwater was encountered in all boreholes advanced at the proposed HDD water crossing locations. Groundwater strikes in boreholes RC02 and RC03 during drilling works were encountered within the Gravel or Silt deposits encountered at these locations. In borehole RC01 groundwater was encountered at the intersection with Weathered Bedrock at approximately 2.5m BGL.

During trial pit excavations minor shallow (perched) groundwater seepage to moderate ingress was noted in certain trial pits. Table 4.1 shows the groundwater strikes encountered during the intrusive site investigations. The remainder of site investigation location were noted as being dry during the works.

At proposed turbines T13 and T20 groundwater seepage was noted in trial pits at 2.0m and 3.5m BGL respectively. At turbine location T22 a moderate ingress of groundwater into the trial pit was observed at 2.0m BGL.

Table 4.1: Summary of Groundwater Encountered

Borehole/Trial Pit ID	Groundwater Strike (m bgl)
RC01	6.0m
RC02	4.0m
RC03	2.5m

P20-099 www.fehilytimoney.ie — Page 15 of 28

BP-TP01 (at BP01)	Seepage at 2.0m
BP-TP02 (at BP01)	None Encountered
BP2-TP01	None Encountered
BP2-TP02	None Encountered
BP2-TP03	None Encountered
BP2-TP04	Seepage at 3.0m
BP2-TP01	None Encountered
BP3-TP03	Seepage at 0.6m
TP-T03	Seepage at 1.2m
TP-T06	None Encountered
TP-T07	Slight inflow at 3.0m
TP-T13	Seepage at 2.0m
TP-T20	Seepage at 3.5m
TP-T21	None Encountered
TP-T22	Moderate Ingress at 2.0m

4.2 Geotechnical Laboratory Testing

Following completion of intrusive site investigations by IDL laboratory testing was scheduled by FT. Soil and Rock testing was carried out in accordance with BS1377 (1990) - *Methods of Test for Soils for Civil Engineering Purposes* in their own designated Materials Laboratory, accredited in accordance with the Irish National Accreditation Board (INAB).

The samples of the overburden material (Glacial Till) were analysed for a range of parameters which included Particle Size Distribution (PSD), moisture content and Atterberg Limits. Chemical testing was also undertaken to determine Concrete Classification from the derived Sulphate Class for buried concrete. Testing was also completed on rock samples obtained from cores retrieved during rotary drilling works. These included Point Load Index and Uniaxial Compressive Strength testing.

The analysis results are summarised in Table 4.2 over.

Table 4.2: Laboratory Testing

Туре	N	Min	Max	Remarks
Natural Moisture Content (%)	29	0.6	31	Typical moisture content values for Gravel Deposits were between 0.6% to 22%. For cohesive deposits moisture content values ranged from between 11% to 26%
Atterberg Limits	11	PI: 6	PI: 21	Liquid Limit, LL 24% to 39% Plastic Limit, PL 15% to 29% Plasticity Index, PI 1 to 30
Particle Size Distribution	29	-	-	Material encountered ranges from sandy gravelly SILT/CLAY to sandy clayey GRAVEL PSD test results from proposed borrow pits confirm indicate material to be Class 1 (granular fill) or Class 2 (cohesive fill)
California Bearing Ratio Test (%)	3	0.2	1.7	

P20-099 www.fehilytimoney.ie — Page 16 of 28

Moisture Condition Value (MCV)	8	3.4	12.5	
Point Load Index (MPa)	3	0.4	0.8	
Uniaxial Compressive Strength (MPa)	1	4.9	4.9	
рН	12	5.46	8.58	
Chloride (Water Soluble) (mg/l)	9	7.19	13.8	
Sulphate as SO₄ (Total)	9	ND	ND	

P20-099 www.fehilytimoney.ie — Page 17 of 28

5. GROUND MODEL

The site walkover and ground investigations have generally confirmed the anticipated geology described in the Desk Study. A summary of the geological strata encountered during the ground investigations is summarised in Table 5.1 below.

Table 5.1: Summary of Geology Encountered

Strata	General Description	Depth to Top Range (m bgl)	Depth to Bottom Range (m bgl)
Peaty Topsoil	Black amorphous Peat	0.0 - 0.3	0.1 - 0.6*
Made Ground	Slightly gravelly silty medium to coarse Sand or Sub-angular fine Limestone Gravel Or Firm brown gravelly Clay Or Orange brown sandy gravelly Silt	0.0	0.3 – 2.0
Glacial Till (SILT)	Soft to Stiff sandy gravelly SILT	0.0 - 0.9	0.4 – 7.3
Glacial Till (CLAY)	Firm to stiff slightly sandy slightly gravelly CLAY	0.0 – 3.2	0.35 – 4.3 (ND)
Glacial Till (SANDS & GRAVELS)	Clayey gravelly fine to coarse SAND with Cobbles Or Silty sandy fine to coarse sub-angular to angular GRAVEL with Cobbles and/or Boulders	0.4 – 7.3	2.0 - 15.0 (ND)
Weathered Bedrock (Ballytrasna Formation)	Angular and blocky Cobble and Boulder sized clasts of SILTSTONE/MUDSTONE	1.3 – 2.8	2.7 – 4.0
Bedrock (Ballytrasna Formation)	Medium strong thinly bedded greenish brown slightly sandy fine-grained SILTSTONE/MUDSTONE.	2.7 – 10.8	>14.2 (limit of borehole)

^{*}From peat probing and intrusive investigation.

P20-099 www.fehilytimoney.ie — Page 18 of 28

6. SLOPE STABILITY ASSESSMENT

6.1 Factors Controlling the Stability of Slopes

The factors controlling the stability of slopes are:

- Slope geometry
- Geology
- Properties of the slope material
- Groundwater levels
- Surcharge.

From a review of the GSI Landslide Susceptibility database the proposed development and proposed infrastructure locations are generally located within areas of 'Low' susceptibility. The exceptions are T20 and T21 (Moderately High) and T22 (Low to Moderately Low). These turbines are all located in the northern portion of the proposed development.

Slopes at these proposed turbine locations were recorded during site walkover to be moderate/steep with maximum slope angles of 10.2 degrees at turbines T20 and T22 to 14.5 degrees at T21. These turbines are located along the east-west ridge at the north of the proposed development. Since these are the worst-case slopes within the development where the landslide susceptibility is greater that 'Low' these locations were selected for slope stability assessment in accordance with the principles of Eurocode 7 (IS EN 1997-1).

6.2 Eurocode 7 and Partial Factors

In accordance with the principles of Eurocode 7 (IS EN 1997-1), rather than using a global factor of safety as per previous design codes, the factors of safety (termed partial factors) are applied to the chosen characteristic values to obtain design values. Actions (influences) are multiplied by the safety factor, while resistances are divided by the safety factor.

In accordance with Eurocode 7 (IS EN 1997-1), geotechnical checks must be carried out to ensure that the resistance preventing a slide are greater than or equal to the actions which cause a slide, i.e.:

$$E_d \le R_d$$

Where:

 E_d = Sum of design actions R_d = Sum of design resistances

By adopting the methods of analysis given in Eurocode 7 (IS EN 1997-1), the factor of safety against failure is *included* in the partial factors (ranging from 1.0 to 1.3 for various parameters) applied to the analysis rather than to the end result. In order to verify that this condition is met, the resulting "safety ratio" must be equal or greater than 1.0 in order to verify that the above condition is met. i.e.: An in-situ "safety ratio" of less than 1.0 indicates that the slope currently has an inadequate factor of safety against failure and therefore is potentially unstable. Ratios greater than 1.0 indicate an adequate factor of safety against failure and are considered stable in both short and long term.

P20-099 www.fehilytimoney.ie — Page 19 of 28

Table 6.1: Partial Factors used to Derive Design Parameters

Partia	l Factor	Parameter		
γ c'	1.25	Effective cohesion		
γ ②'	1.25	Effective angle of friction		
Y Y	1	Soil density		
γ Q	1.3	Loading (unfavourable)		
γ R;e	1	Earth resistance		

Table 6.1 shows the partial factors which have been applied to the characteristic values to give the derived parameters in Table 6.2 and 6.3 used during the slope stability analyses. The design parameter is derived by multiplying or dividing the characteristic values by the associated partial factor, i.e. tan $15(\phi') / 1.25(\gamma_{\phi'}) = 12.1^{\circ}$.

6.3 Slope Stability Analysis Method

SLOPE/W software of GEO-SLOPE International Ltd. was used to assess the stability of proposed slopes at turbine locations T20, T21 and T22. SLOPE/W is a general software tool for the slope stability analysis of earth structures.

It uses the limit equilibrium method of analysis by using the idea of dissecting a potential sliding mass into vertical slices. It assesses the factor of safety for both moment and force equilibrium based on various methods, including Bishop, Janbu and Morgenstern-Price.

Using this software, it is possible to deal with complex stratigraphy, highly irregular pore-water pressure conditions, a variety of linear and nonlinear shear strength models, virtually any kind of slip surface shape, concentrated loads and pressure lines. Limit equilibrium formulations based on the method of slices are also being applied more and more to the stability analysis of structures such as tieback walls, nail or fabric reinforced slopes, and even the sliding stability of structures subjected to high horizontal loading arising.

Traditionally, the factor of safety is defined as that factor by which the shear strength of the soil must be reduced in order to bring the mass of soil into a state of limiting equilibrium along a selected slip surface. The results of the analysis show the overall stability of the embankment expressed as a factor of safety.

The definition of factor of safety used within SLOPE/W is:

$$F = \frac{\text{Available restoring moment (or forces)}}{\text{Total disturbing moment (or forces)}}$$

Design values for use in the slope stability analysis have been derived using Eurocode 7 (IS EN 1997-1) Design Approach 3. This design approach is considered to be the most logical approach for slope stability analysis as it includes partial factors for both material properties and variable loads (for example traffic loads).

P20-099 www.fehilytimoney.ie — Page 20 of 28

6.4 Limitations of Slope Stability Analysis

The application of traditional stability analysis such as this can be misleading as they assume a circular slip surface is the ultimate limit state. In reality, the ultimate limit state is likely to be non-circular in nature and as such these models may not be strictly modelling the critical limit state. Slope/W allows for some optimisation of the slip surface within its analysis which reduces this limitation to some extent.

Despite the limitations outlined above, this method of slope analysis is still considered to provide a conservative analysis of the ultimate limit state and its use is in accordance with current industry best practice.

6.5 Material Properties

Table 6.2 below shows the typical parameters used for the Glacial Till and bedrock encountered beneath the turbine locations T20, T21 and T22 in the Drained conditions.

Table 6.2: Characteristic Parameters for Materials

Material	Glacial Till (Granular)	Glacial Till (Cohesive)	Bedrock (Weathered)	Bedrock (Intact)
Cohesion, c', kN/m ²	0	5	0	4000
Effective Friction angle, ϕ' ,	35	30	35	30
Bulk unit weight, γ, kN/m³	21	20	21	22

Table 6.3 below shows the design parameters which have been derived using the partial factors given in Table 6.1.

Table 6.3: Design Parameters for Materials

Material	Glacial Till (Granular)	Glacial Till (Cohesive)	Bedrock (Weathered)	Bedrock (Intact)
Cohesion, c', kN/m ²	0	4	0	3200
Effective Friction angle, ϕ' ,	28.1	21.3	28.1	21.3
Bulk unit weight, γ , kN/m^3	21	20	21	22

6.6 Loading

A modelled foundation loading of 280kN/m^2 was conservatively applied to the slopes during the analyses to simulate the turbine foundation on the slopes. After applying a partial factor of 1.3 as per IS EN 1997-1 Design Approach 3 (variable, unfavourable action), a design load of 364kN/m^2 has been applied to the models.

For the purposes of the slope stability modelling all shallow soft deposits have been removed from the proposed location of the turbine foundation.

P20-099 www.fehilytimoney.ie — Page 21 of 28

6.7 Slope Stability Analysis Models

Three Slope/W models have been presented to reflect the proposed slopes at the turbine locations as outlined below:

- Model 1- Turbine T20
- Model 2 Turbine T21
- Model 3 Turbine T22

The results of those analyses are summarised in Table 6.4 with safety ratios calculated for the Morgenstern-Price method. The critical slope analysis is presented graphically for the turbine locations in Figures 6.1, 6.2 and 6.3 using the Morgenstern-Price method of analysis and in Appendix B of this report.

6.8 Slope Stability Analysis Results

Safety ratios for potential slope failures (Table 6.4) ranged from 1.528 to 2.822. Analyses were undertaken for both deep-seated (rotational) type slips and shallow (translational) type although the shallow translations failures within the overburden deposits gave the lower safety ratios.

Table 6.4: Slope Analysis Results

Model Name	Turbine Location	Morgenstern-Price FoS
Model 1	T20	2.822
Model 2	T21	1.528
Model 3	T22	2.822

Safety ratios for potential slope failures for drained conditions ranged from 1.528 to 2.822 at proposed turbine locations T20, T21 and T22. By adopting the methods of analysis given in IS EN 1997-1, the factor of safety (FoS) against failure is included in the partial factors applied to the analysis rather than to the end result. A safety ratio of greater than 1.0 indicates that the slope is considered stable in the long-term drained conditions.

In order to maintain the safety of the slopes during the foundation and hardstands excavation works and associated cut and fill activities groundwater and surface water drainage should be maintained to mitigate the potential instability of the slopes. It is also recommended that surcharging loads i.e. construction traffic is limited to 10kN/m² and a 0.5m exclusion zone from the edge of the crest of constructed slopes is maintained to prevent surface failures or shoulder failure at the crest of the slope.

In addition, it is recommended that the slopes are inspected after extended periods of heavy rain for any signs of instability such as tension cracks at the top of the slopes or bulging near the toe of slopes.

P20-099 www.fehilytimoney.ie — Page 22 of 28

7. GEOTECHNICAL CONSIDERATIONS

7.1 Turbine Foundations

Based on the findings of the site investigations undertaken to date, a preliminary assessment of the likely foundation types found that a gravity foundation construction (founded) would be suitable for all of the proposed turbine foundations.

At the underside of the turbine foundation, a layer of structural up-fill (class 6N/6P - in accordance with TII requirements) will be required.

It should be noted that at detailed design stage a detailed ground investigation will be carried out at each proposed turbine locations to confirm the turbine foundation type. The ground investigation will be in the form of a borehole with in-situ SPT testing at 1.0m intervals in the overburden and follow-on rotary core through bedrock.

A summary of turbine foundations type, estimated depth and founding stratum is provided below in Table 7.1.

Table 7.1: Turbine Foundation Summary

Proposed Infrastructure	Quaternary Deposits (GSI)	Ground Conditions Encountered	Average Peat Depth (m)	Slope (degrees)	Depth to Bedrock	Foundation Recommendation
Т02	Bedrock outcrop or sub-crop	Soft Peaty Topsoil with gentle to level topography	0.3 (Peaty Topsoil)	2	4.5m	Gravity foundation up to 3.0m BGL. Groundwater control may be required.
Т03	Till derived from Devonian sandstones	Soft Organic Topsoil overlying stiff cohesive glacial deposits, with gentle topography	0.3 (Peaty Topsoil)	4	0.6 - 2.5m	Gravity foundation up to 3.0m BGL. Groundwater control may be required.
Т04	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle topography	0.3m	2	6.4 -12.5m	Gravity foundation up to 3.0m BGL. Groundwater control may be required.
Т05	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle to level topography	0.4m (Peaty Topsoil)	3	5.0m	Gravity foundation up to 3.0m BGL. Groundwater control may be required.
Т06	Till derived from Devonian sandstones	Made Ground overlying stiff cohesive glacial deposits, with gentle to level topography	0.3m (Peaty Topsoil)	4	2.4m	Gravity foundation up to 3.0m BGL. Groundwater control may be required.
Т07	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle to level topography	0.6m (Amorphous peat with silt laminations)	2	3.5m	Gravity foundation up to 3.0m BGL. Groundwater control may be required.
Т08	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to level topography	-	2.2	6.0m	Gravity foundation up to 3.0m BGL. Groundwater control may be required.
Т09	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle topography	-	3.4	2.5m	Gravity foundation up to 3.0m BGL. Groundwater control may be required.
T10	Till derived from Devonian sandstones	Grassland with Loamy Topsoil, level topography	-	1.7	3.4 - 7.0m	Gravity foundation up to 3.0m BGL It is recommended to excavate to weathered bedrock level. Groundwater control may be required.

P20-099 www.fehilytimoney.ie — Page 23 of 28

T11	Till derived from Devonian sandstones	Grassland with Loamy Topsoil, level topography	-	1.7	2.4m	Gravity foundation up to 4.0 m BGL to be filled with compacted structural fill
T12	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle topography	-	1.1	5.0m	Gravity foundation up to 3.0 m BGL. Deeper excavation is required due to differences in the topographical elevation. Lateral change to cohesive is probable.
T13	Till derived from Devonian sandstones	Soft Peaty Topsoil with gentle to level topography	0.2m (Peaty Topsoil)	1.7	2.7m	Gravity foundation up to 5.0 m BGL to be filled with compacted structural fill. It is recommended to bench the excavation. Groundwater control may be required
T14	Bedrock outcrop or sub-crop	Soft Organic Topsoil with gentle topography	-	2.2	4.8m	Gravity foundation up to 3.0 m BGL. Sub-formation should be compacted. Groundwater control may be required
T15	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle topography	-	3.4	4.0 - 10.0m	Gravity foundation up to 3.0 m BGL. Sub-formation should be compacted. Groundwater control may be required
T16	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle topography	-	3.4	4.5	Gravity foundation up to 3.0 m BGL. Lateral variability is expected. Sub-formation should be compacted. Groundwater control may be required
T17	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to moderately sloping topography	-	3.4	2.0 - 4.5m	Gravity foundation up to 3.0 m BGL. Sub-formation should be compacted. Groundwater control may be required
T18	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to moderately sloping topography	-	4	8.0m	Gravity foundation up to 3.0 m BGL. Sub-formation should be compacted. Groundwater control may be required
T19	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to moderately sloping topography	-	5	5.6m	Gravity foundation up to 4.0 m BGL to be filled with compacted structural fill. Sub-formation should be compacted. The excavation must be benched. Groundwater control may be required
T20	Bedrock outcrop or sub-crop	Soft Organic Topsoil with gentle to moderately sloping topography	-	10.2	3.4 - 10.0m	Gravity foundation up to 5.0 m BGL to be filled with compacted structural fill. Groundwater control may be required
T21	Bedrock outcrop or sub-crop	Soft Organic Topsoil with gentle to moderate to steep slopes	-	14.5	10.0m	Gravity foundation up to 3.0 m BGL. Sub-formation must be compacted. Groundwater control may be required
T22	Bedrock outcrop or sub-crop	Soft Organic Topsoil with gentle to moderate to steep slopes	-	10.2	4.0m	Gravity foundation up to 4.0 m BGL to be filled with compacted structural fill. Sub-formation must be compacted. Groundwater control may be required
T23	Till derived from Devonian sandstones	Soft Organic Topsoil with gentle to moderate slopes	-	5	8.6m	Gravity foundation up to 4.0 m BGL to be filled with compacted structural fill. Groundwater control may be required

7.2 Access Tracks

It is considered all newly constructed access road will be of the founded type. Existing access road infrastructure will be incorporated into the design or improved upon through the use of widening and strengthening.

P20-099 www.fehilytimoney.ie — Page 24 of 28

Founded roads are used in areas where competent ground is encountered at shallow depth. These roads are constructed by excavating until competent strata is encountered and then filling with a compacted 6F2 granular fill to road level. A layer of Class 804 material (in accordance with 800 Series of the Specification for Road Works) is then used as a surfacing layer.

Tracks shall be observed during earthworks operations, if excessive rutting occurs, the pavement depth shall be increased.

Stone fill of suitable Class 6F2 material will be placed and compacted in accordance with the TII Specification for Road Works.

Where bearing stratum has slope greater than 1:5, benching should be carried out. Benches to be 0.5m Vertical & 1.0m Horizontal, with maximum crossfall of 2% on Horizontal section.

7.3 Crane Hardstands

Crane hardstands will all be founded. Crane hardstands are generally constructed using compacted Class 1/6F material on a suitable sub-formation to achieve the required bearing resistance. The hardstands will be designed for the most critical loading combinations from the crane. The founding levels for the hardstands may be variable across the site and will be determined during detailed ground investigation/design stage.

The typical make-up of the hardstands would include up to 1,000mm of compacted Class 1/6F material with geotextile and/or geogrid layers incorporated as required during detailed design stage.

Substation Foundations and Platforms 7.4

The substation platforms will be constructed using the founded technique. The substation foundations may comprise strip/raft foundations under the main footprint of the building with possibly a basement/pit for cable connections. Substation platforms are generally constructed using compacted Class 1/6F material with a suitable sub-formation to achieve the required bearing resistance.

Given the ground conditions present at the proposed substations, it is envisaged that the foundations will require to be founded on Glacial Till deposits. The typical make-up of the substation platform may include up to 750mm of granular stone fill with possibly a layer of geotextile and/or geogrid. At the underside of the substation foundations, a layer of structural up-fill (class 6N/6P) will likely be required.

7.5 **Temporary Construction Compound Platforms**

The construction compound platforms will be constructed using founded techniques. The construction compound platforms are generally constructed using compacted Class 1/6F material on a suitable subformation to achieve the required bearing resistance.

The typical make-up of the construction compound platform would include up to 500mm compacted Class 1/6F material with a suitable sub-formation to achieve the required bearing resistance. Geotextile and/or geogrid layers will be incorporated as required during detailed design stage.

P20-099 www.fehilytimoney.ie — Page 25 of 28

7.6 Borrow Pit

As outlined in Section 3.1.3 Exploratory trial pits were advanced at proposed borrow pit locations BP01, BP02 and BP03 to assess potential for use of site won materials as general Fill material for the construction of elements of the proposed development. Geotechnical and environmental samples were also collected from trial pits with the results discussed in Section 4.2 of this report.

From a preliminary assessment of the overburden and weathered bedrock encountered at the proposed borrow pit locations, it is considered that site won material is likely suitable for use as General Fill material. Imported stone fill is likely to be required to form the upper layers of the infrastructure elements.

The findings of the geotechnical testing completed on samples submitted from the proposed borrow pit locations indicates that where cohesive (clay) deposits are encountered this material would be suitable for use as Class 2 (Cohesive Fill) material in accordance with Series 600 of the Specification for Road Works (SPW). Where granular (gravel) deposits are encountered grading carried out on these samples indicates this material would be suitable as Class 1 (Granular Fill) in accordance with Series 600.

Further ground investigation in the form of rotary cores and laboratory testing will be required to assess to the usability and excavatability of the bedrock encountered at the base of the exploratory trial pits.

Groundwater seepages were recorded in the trial pits at depths ranging from 0.6m to 3.0m BGL. It is likely that groundwater levels will require the use of dewatering plant during the development of the proposed borrow pits.

7.7 HDD Watercourse Crossing

From the findings of the site investigations the locations of the proposed HDD cable installation are underlain by Glacial Till deposits which were encountered during intrusive site investigations. The Glacial Till deposits generally comprised medium dense to dense GRAVEL and medium dense SAND to the maximum depth of investigation at 15m BGL at WS017.

At WS006 Weathered Bedrock was encountered between 2.6m and 3.4m BGL and was described as Weathered SILTSTONE. This was recovered in the borehole arising as *Angular fine to coarse gravel sized clasts of purple SILTSTONE with purple SILT*. Competent Bedrock was encountered at WS007 at 10.8m BGL.

Given the presence of Alluvial deposits at the site it is likely that Directional Drilling will be advanced through granular material comprising medium dense to dense gravel deposits. As such the potential borehole collapse and loosening of bore spoil should be addressed at design stage. To mitigate the risks posed to the integrity of the borehole and for the successful completion of the HDD cable installation appropriate drilling fluids should be selected for use in granular conditions to ensure the HDD hole is stabilised during drilling works.

Typically, drilling fluids containing Bentonite Clay which consist of natural clay material with swelling properties can be applied to support the open bore during drilling works. To minimise the volumes of drilling fluid used during the works a suitable recycling method could be employed so it can be used again and reduce fluid loss to groundwater.

Based on the findings of the investigations existing ground conditions are suitable for HDD cable installation works at the locations investigated subject to the mitigation of risks outlined above.

P20-099 www.fehilytimoney.ie — Page 26 of 28

CLIENT: Coom Green Energy Park Ltd.
PROJECT NAME: Coom Green Energy Park
REPORT: Geotechnical Assessment Report

8. CONCLUSIONS AND RECOMMENDATIONS

Fehily Timoney & Company (FT) were retained by Coom Green Energy Park (GCEP) Ltd in partnership with Coillte to undertake geotechnical site assessments at the proposed Coom Green Energy Park (CGEP) located in north County Cork.

The site spans across the southern and southwestern extents of the Nagle Mountains, south of the Blackwater River Valley. Both the Nagle mountains and the Blackwater River valley are the most prominent landscape features within the central study area and its wider surrounds. Reaching a height of approximately 420m AOD.

The slopes of the southern portion of the proposed development site (Bottlehill) is characterised by elevated lands with typical elevations of between 270m to 290m AOD. The central portion of the site (Mullenaboree) is also characterised by elevated lands with gentle slopes. Elevations at this portion of the proposed development are generally lower than those at the south with typical elevations of between 220m to 260m AOD. The northern portion of the proposed development (Knockdoorty) comprises a ridge feature at the extreme northern boundary of the proposed development trends east-west and reaches maximum elevations of between 424m and 428m AOD to the north of turbines T21 and T23 respectively.

A review of the published GSI datasets for the site indicated that the site is underlain by Glacial Till deposits underlain by the Devonian Ballytrasna Formation. The Ballytrasna Formation is described as comprising dusky-red mudstone with subordinate pale-red sandstones occurring throughout the formation. The findings of the intrusive site investigations confirm the geological profiles outlined by the GSI mapping and datasets.

Maximum slope angles of 10.2 degrees at turbines T20 and T22 to 14.5 degrees at T21 were recorded. Since these are the worst-case slopes within the development these locations were selected for slope stability assessment. Safety ratios for potential slope failures for drained conditions ranged from 1.528 to 2.822 at proposed turbine locations T20, T21 and T22. A safety ratio of greater than 1.0 indicates that the slope is considered stable in the long-term drained conditions.

Based on the analyses presented, no data points were recorded to have a FoS of less than 1.0 with the lowest in-situ FoS of 30.6 recorded. The results give rise to in-situ safety ratios for translational slides which are above the minimum required value for all infrastructure locations analysed.

Despite the development site having an acceptable margin of safety with respect to slope stability a number of mitigation/control measures are proposed to ensure that all works adhere to an acceptable standard of safety for work in upland site conditions. Mitigation/control measures identified for each of the infrastructure elements in the risk assessment should be taken into account and implemented throughout design and construction works (Appendix D).

Based on the findings of the intrusive site investigations it is likely that Directional Drilling will be advanced through granular deposits at the site. This should be taken into account by the Drilling Contractor in completing Method Statements for the works. Appropriate drilling fluids should be selected for use in granular conditions to ensure the HDD hole is stabilised during drilling works. During drilling works sufficient thickness of alluvial deposits (3m) should be maintained between the HDD bore and the bed of each of the watercourses at the proposed HDD locations.

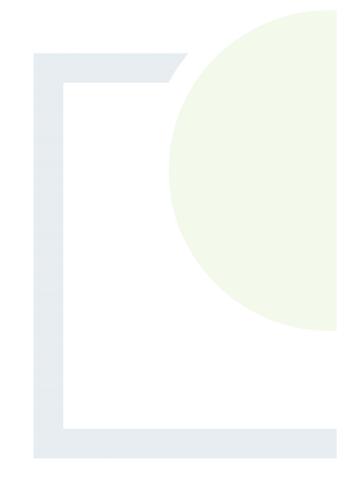
Best practice should be implemented for HDD activities. Locations for drill rig positioning and pipeline pull areas shall be chosen or engineered such that the fall is away from the waters in question, thereby facilitating installation of pollution containment and control facilities. Where drilling fluids are being returned for cleaning and re-use or recirculation through a temporary fluid return line, pneumatic leak testing shall be carried out to

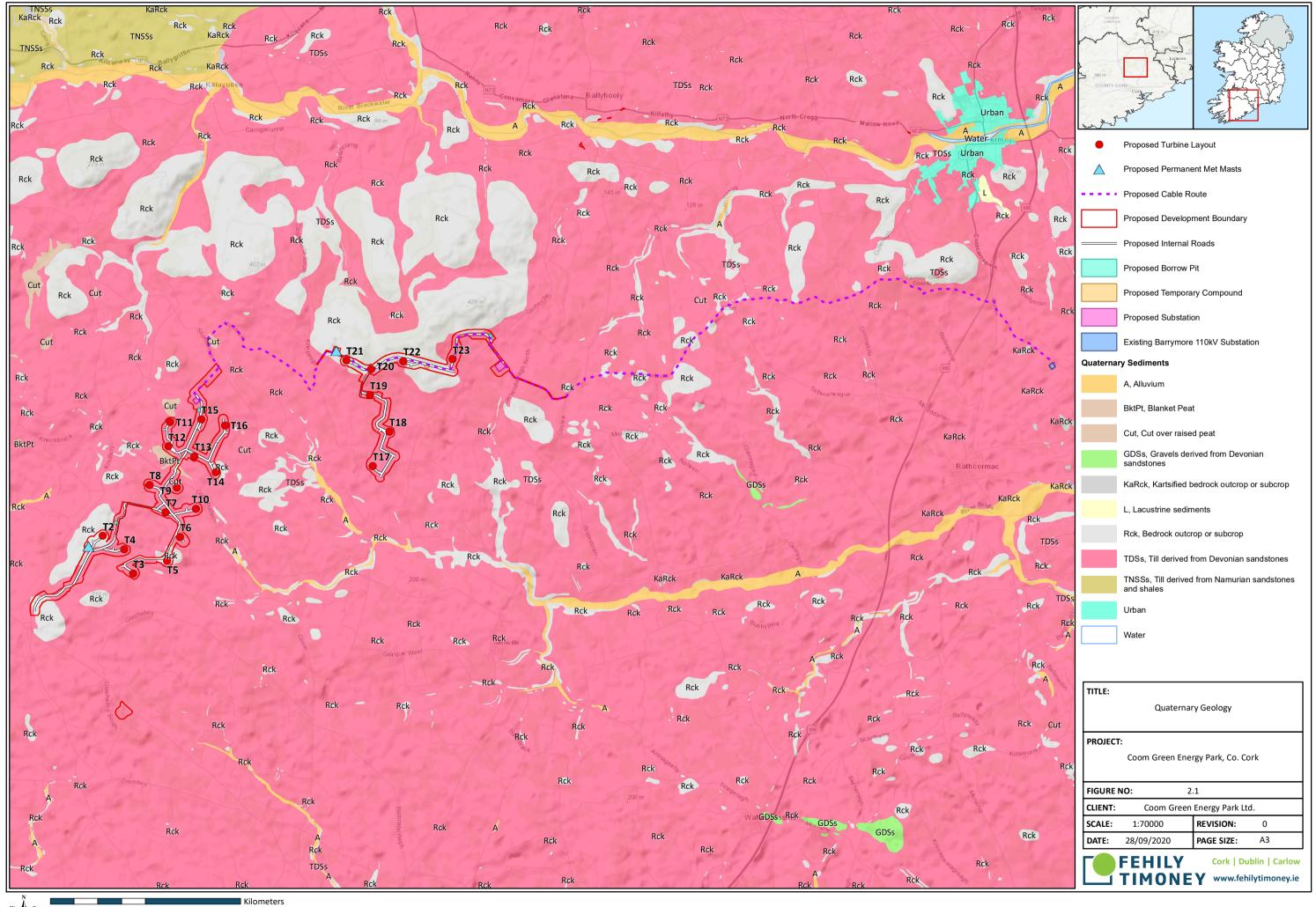
P20-099 www.fehilytimoney.ie — Page 27 of 28

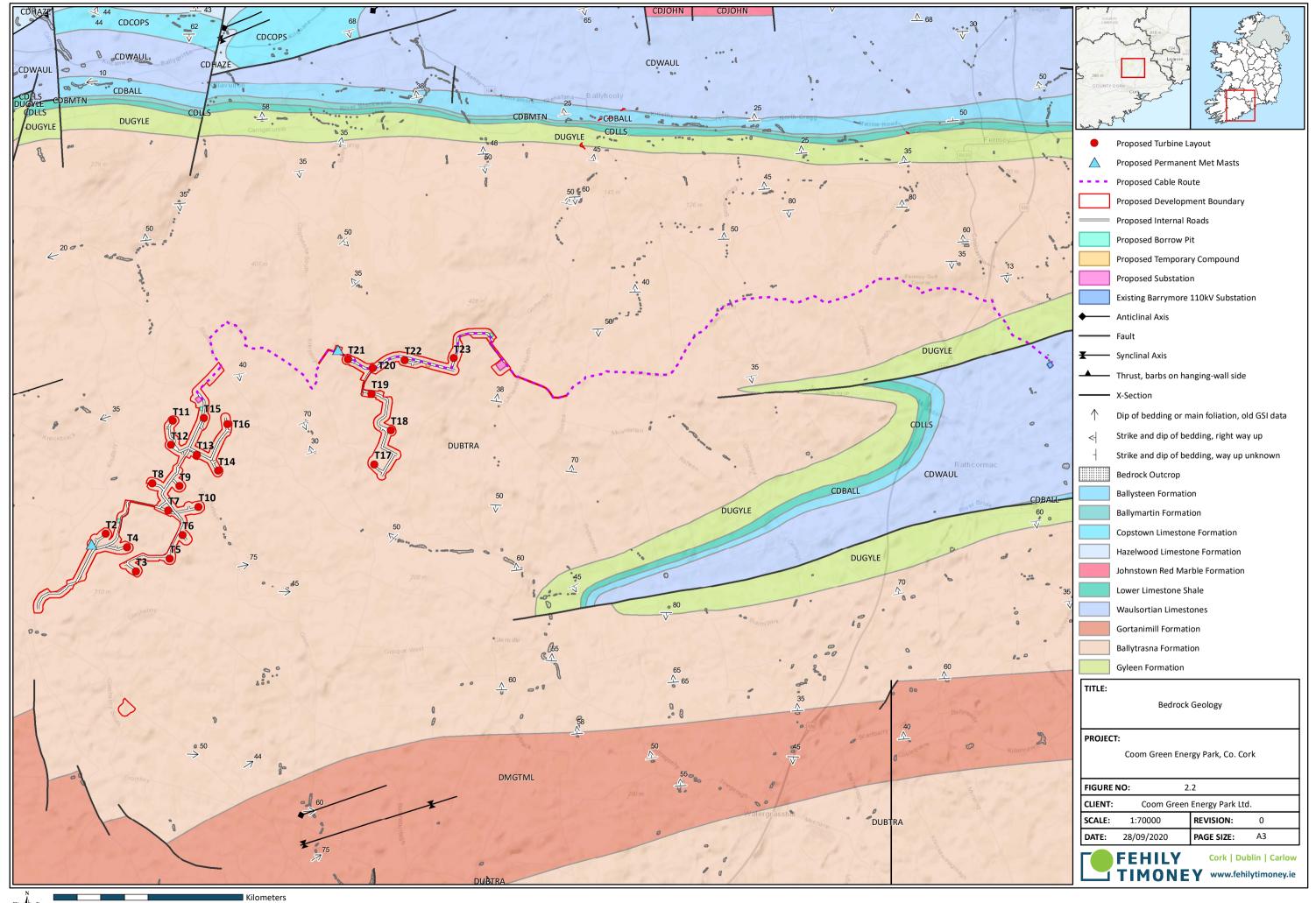
CLIENT: Coom Green Energy Park Ltd.
PROJECT NAME: Coom Green Energy Park
REPORT: Geotechnical Assessment Report

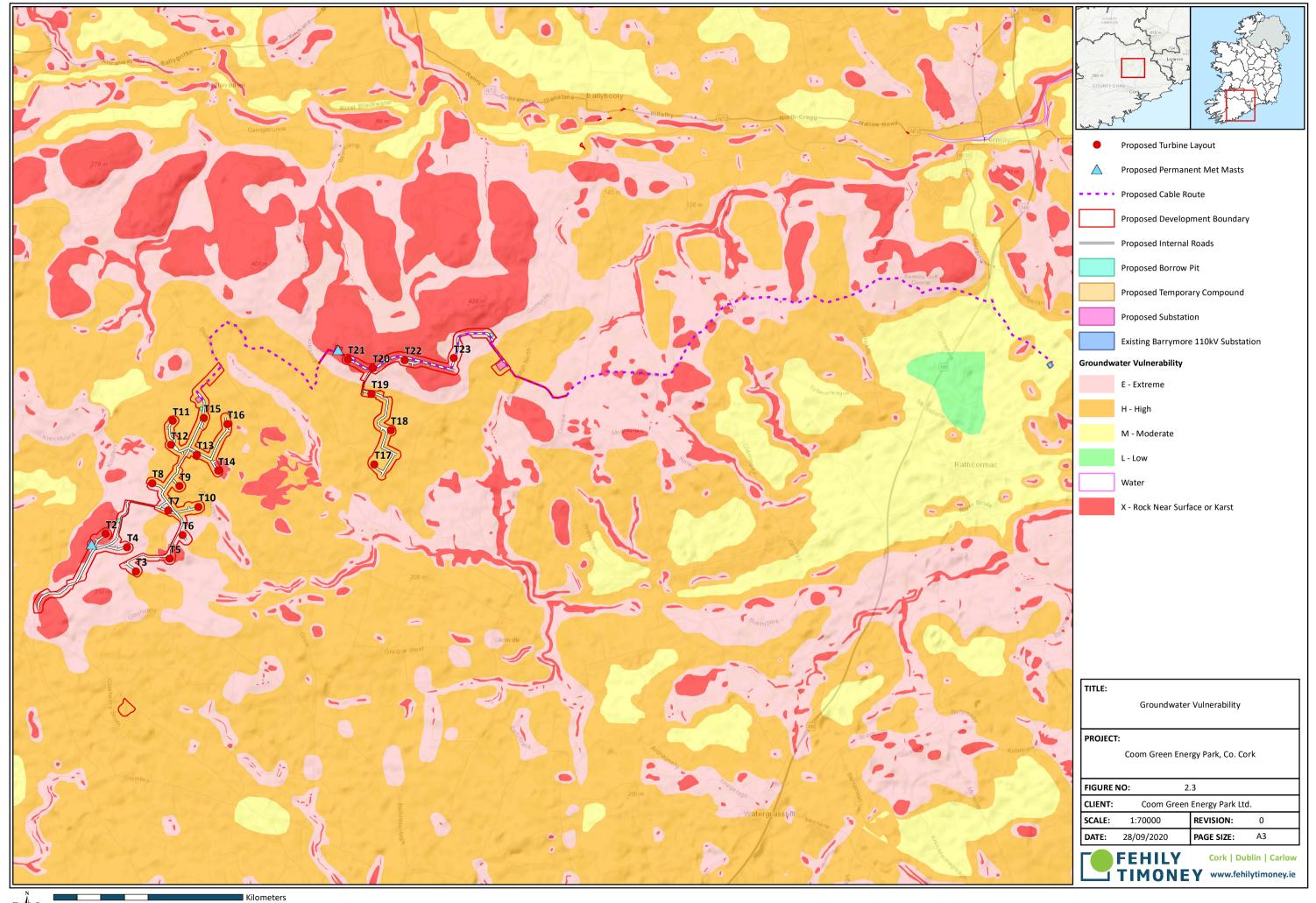
confirm the integrity of the return line. Spent drilling fluids including separated drill materials shall be contained in secure bunded areas for off-site disposal at a licensed disposal facility.

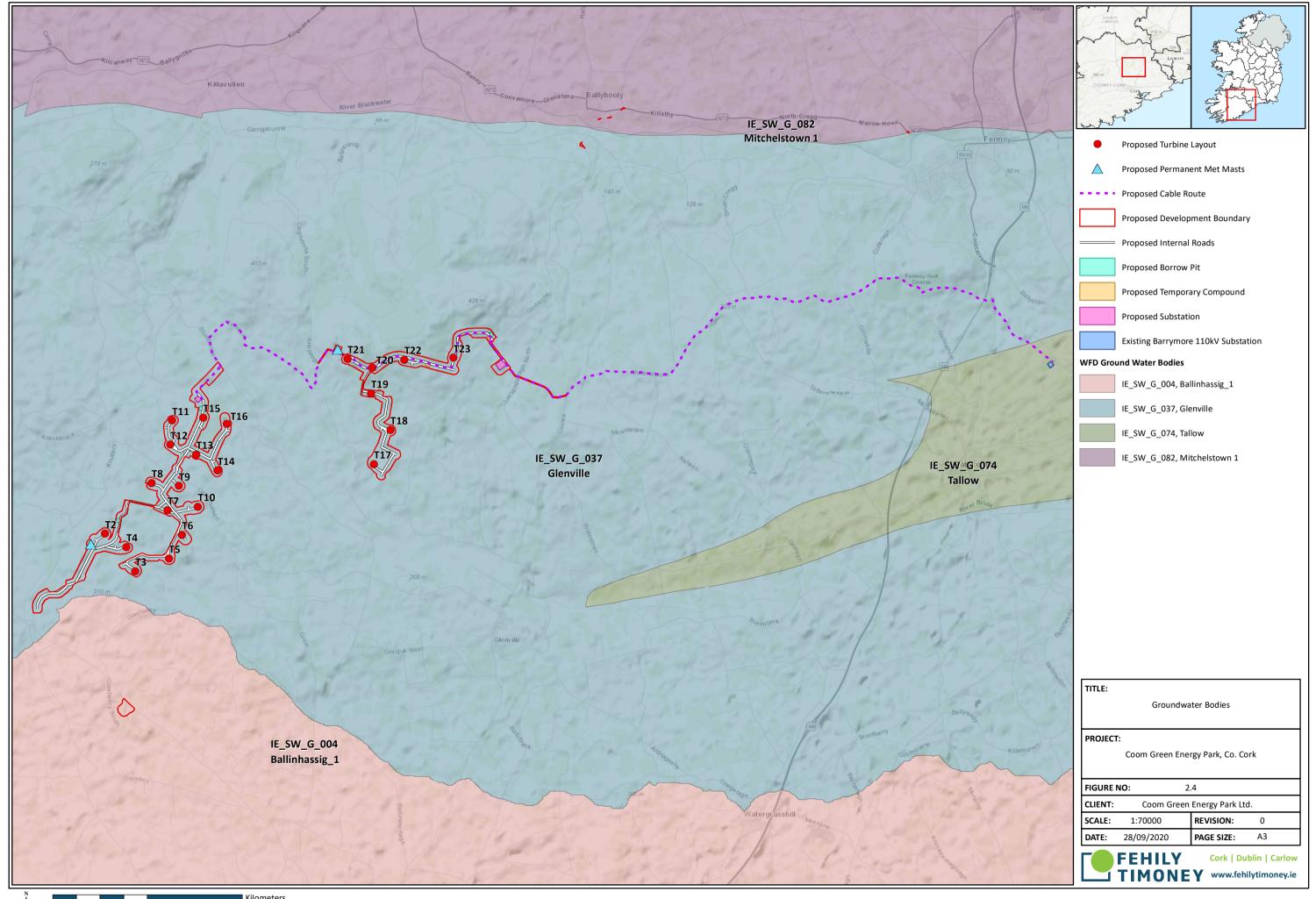
There is a risk of water ingress during excavation for the footings above the level of bedrock at the site. As such, provisions should be made for sump pumping should water ingress occur. Should foundations be required to advance below bedrock dewatering infrastructure should be considered during detailed design stage.

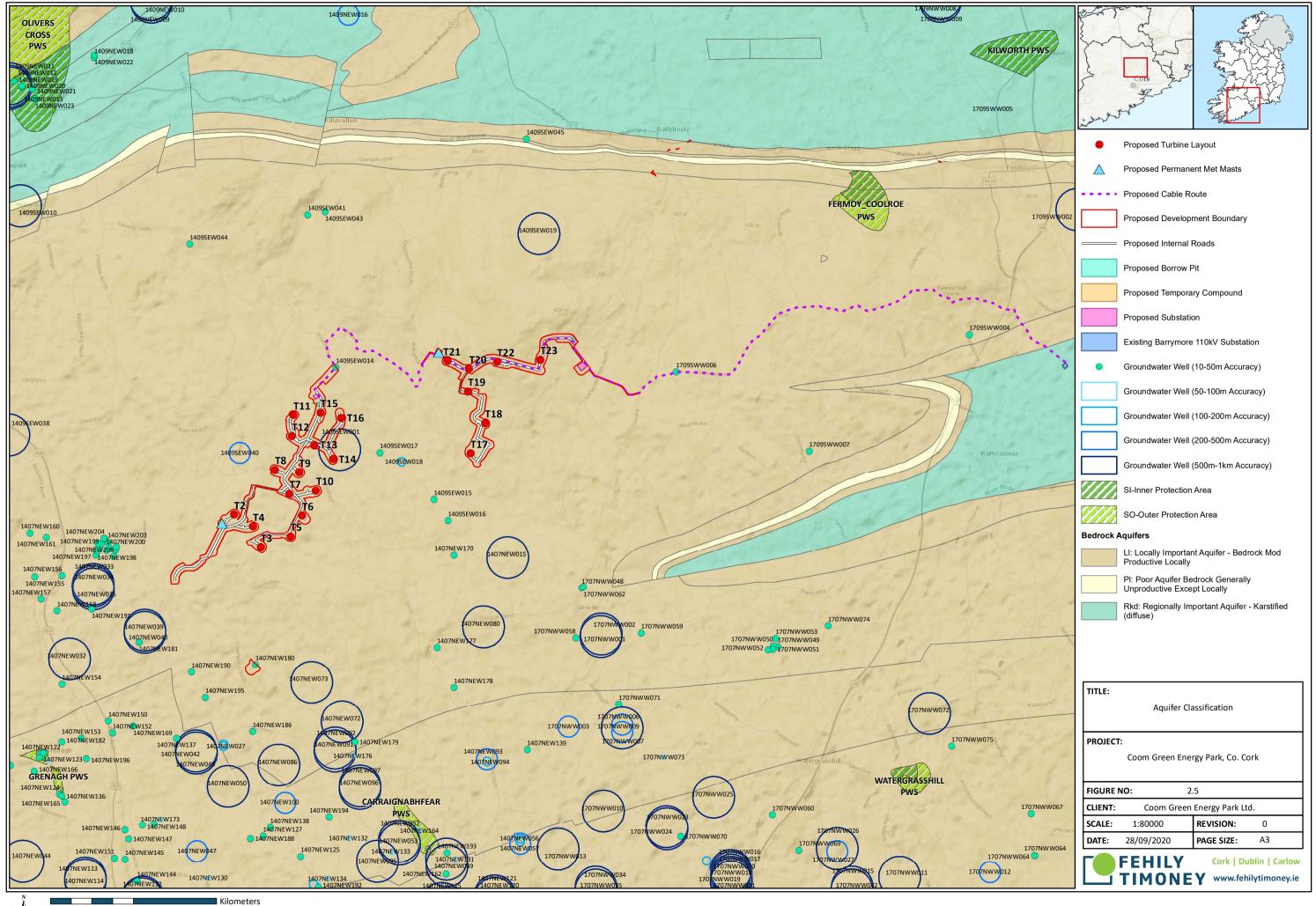

P20-099 www.fehilytimoney.ie — Page 28 of 28

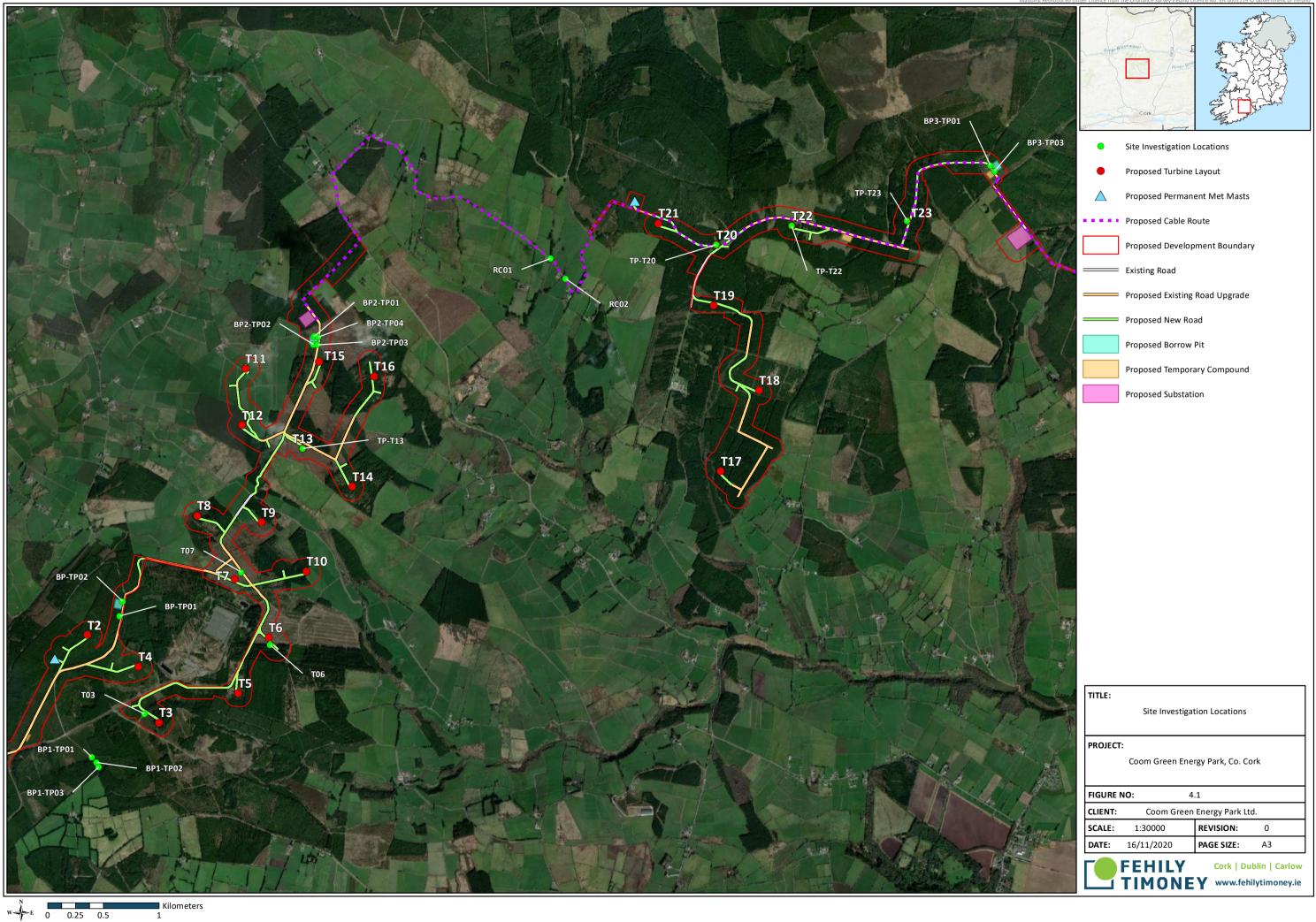

CONSULTANTS IN ENGINEERING,
ENVIRONMENTAL SCIENCE & PLANNING


APPENDIX A


Figures




 Proposed Turbine Layout Proposed Permanent Met Masts Proposed Underground Cable Route Proposed Development Boundary ==== Existing Road Proposed Existing Road Upgrade Proposed New Road Proposed Turbine Hardstanding Area Proposed Borrow Pit Proposed Temporary Compound Proposed Substation TITLE: Site Layout PROJECT: Coom Green Energy Park, Co. Cork FIGURE NO: 1.1 Coom Green Energy Park Ltd. CLIENT: 1:20000 SCALE: **REVISION:** 06/11/2020 PAGE SIZE: A1 DATE: Cork | Dublin | Carlow TIMONEY www.fehilytimoney.ie

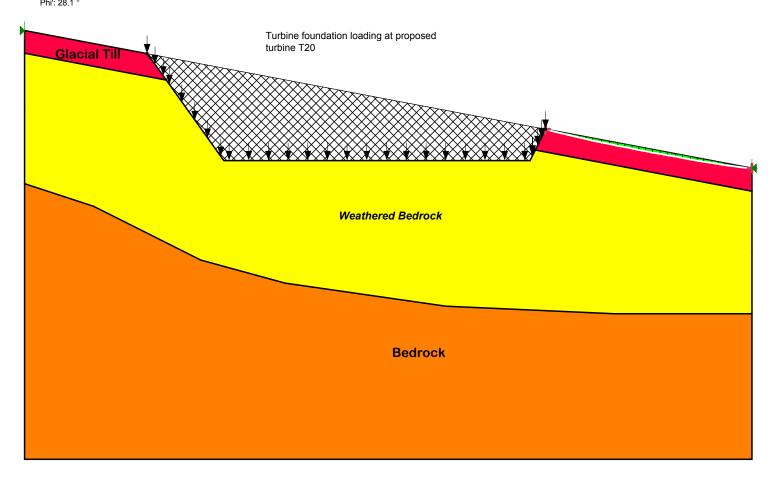


CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX B

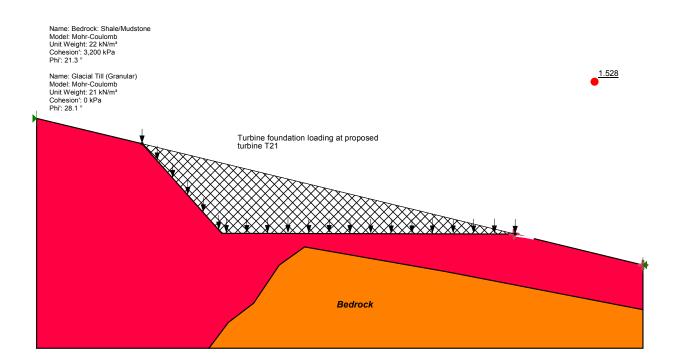
Slope Stability Assessment

Slope Stability Analysis - Proposed Turbine T20


Design Approach 3 Eurocode 7

Name: Weathered Bedrock Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Cohesion': 0 kPa Phi': 28.1 °

Name: Bedrock: Shale/Mudstone Model: Mohr-Coulomb Unit Weight: 22 kN/m³ Cohesion': 3,200 kPa Phi': 21.3 °

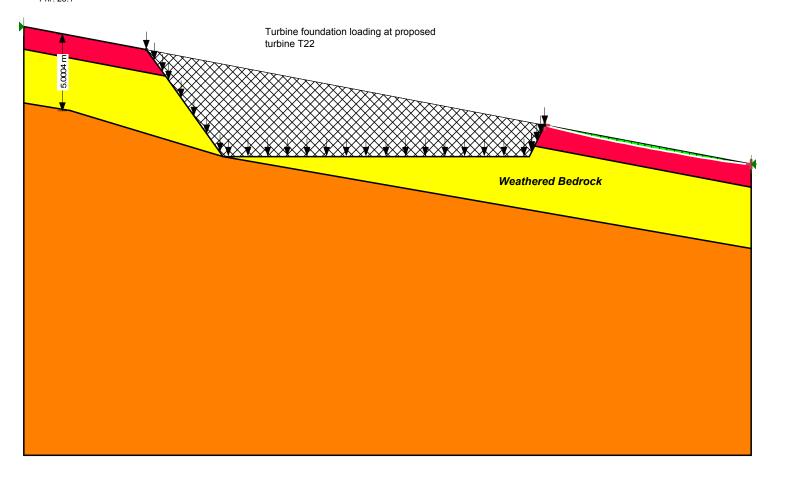

Name: Glacial Till (Granular) Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Cohesion': 0 kPa Phi': 28.1 °

2.822

Slope Stability Analysis - Proposed Turbine T21

Design Approach 3 Eurocode 7

Slope Stability Analysis - Proposed Turbine T22


Design Approach 3 Eurocode 7

Name: Weathered Bedrock Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Cohesion': 0 kPa Phi': 28.1 °

Name: Bedrock: Shale/Mudstone Model: Mohr-Coulomb Unit Weight: 22 kN/m³ Cohesion': 3,200 kPa Phi': 21.3 °

Name: Glacial Till (Granular) Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Cohesion': 0 kPa Phi': 28.1 °

2.822



CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX C

Ground Investigation Factual Report

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

SITE INVESTIGATION FACTUAL REPORT

Coillte, Moneen Road, Castlebar, Co. Mayo. Fehily Timoney & Company, Consulting Engineers, Core House, Pouladuff Road, Cork.

	Prepared by	Approved by	Rev. Issue Date:	Revision No.
	Ronan Killeen	Declan Joyce	14 th November 2019	19 _C_106/001
Signature				

Directors: HERB M. STANLEY, B.Sc., B.A., (Canadium) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., (Secretary) Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

FOREWORD

The borehole and trial pit records have been compiled from an examination of the samples by a Geotechnical Engineer and from the Drillers' descriptions.

The report presents an opinion on the configuration of the strata within the site based on the borehole and trial pit results. The assumptions, though reasonable, are given for guidance only and no liability can be accepted for changes in conditions not revealed by the boreholes.

The fieldwork was carried out in accordance with IS EN 1997-2 and BS5930, 2015 Code of Practice for Site Investigations with precedence given to IS EN 1997-2 where applicable.

Contents:

Appendix 8

Appendix 9

1.0 2.0 3.0 4.0	Introduction The Site & Geology Fieldwork Laboratory Testing
Book 1 of 1	
Appendix 1	Trial Pit Records
Appendix 2	Borehole Records (Rotary Core)
Appendix 3	Geophysical Survey
Appendix 4	Laboratory Test Results (Trial Pits)
Appendix 5	Laboratory Test Results (Boreholes)
Appendix 6	Photographs (Rotary Core)
Appendix 7	Photographs (Trial Pits)

AGS Data

'As-Built' Drawings`

1.0 Introduction.

Irish Drilling Ltd. (IDL) was instructed by Fehily Timoney & Company, Consulting Engineers, on behalf of Coillte, to carry out a site investigation at the site of the proposed Coom Wind Farm.

This site investigation was carried out to provide detailed factual geotechnical information of the underlying ground conditions at the proposed wastewater treatment works site.

The fieldwork commenced on June 17th 2019 and was completed on October 8th 2019.

2.0 Site & Geology

The site is located in and around the environs of Bottlehill, County Cork.

The fieldwork was carried out predominantly on agricultural lands, Coillte forestry lands and national primary and/or secondary road verges.

Site Plans, prepared by the client's representatives and amended by IDL to show 'as-built' locations, are included with this report.

3.0 Fieldwork.

The following plant was mobilised to site to carry out fieldwork operations:

DeltaBase 520 Rotary Core Drilling Rig. Hitachi ex135 Excavator.

Fieldwork carried out to date has included the following:

Thirteen trial pits were excavated on site using a tracked excavator. The pits were logged and photographed by an Engineer with observations made on ground conditions, pit stability and water ingress.

Small and bulk disturbed soil samples were recovered at each change in strata and the samples were returned to the laboratory and presented for testing.

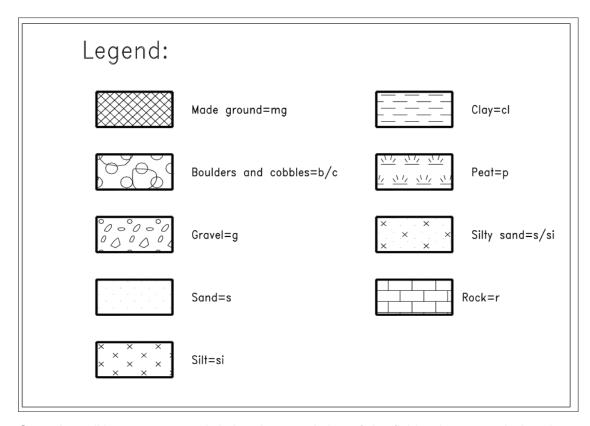
Three rotary core boreholes were carried out along the proposed cable route and at potential water course crossings. The boreholes were carried out to establish overburden conditions and rockhead and to establish the nature and integrity of the underlying rock.

Wireline drilling techniques, using HQ size drill strings, were carried out to recover soil and rock core samples. The core samples recovered consisted of the following core diameters: 64mm (HQ).

The samples were stored in wooden boxes and returned to the laboratory where there were logged and photographed by a Geotechnical Engineer and presented for testing.

In—Situ testing consisting of Standard Penetration Tests were carried out at regular intervals in the overburden or as instructed by the client's representatives.

Bedding planes are defined as the surface that separates one stratum, layer or bed stratified rock from another. Discontinuity is defined as the plane of physical weakness where the tensile strength perpendicular to the discontinuity or the shear strength along the discontinuity is lower than that of the surrounding soil or rock material.



The rotary core boreholes were carried out to depths ranging from 7.50m to 15.00m below ground level.

A geophysical survey was carried out by Minerex Geophysics Limited at proposed turbine locations.

The geophysical survey consisted of 2-D Resistivity and Seismic Refraction and the records of their findings are included as a 'stand-alone' report in appendix 3 of this report.

The following Key Legend Table details the symbology used on the engineering logs to describe ground conditions encountered:

Ground conditions encountered during the completion of the fieldwork were typical and as expected for this region and predominantly consisted of Peat and/or Made Ground overlying Glacial Tills overlying possible weathered bedrock.

The Glacial Tills in general consisted of slightly sandy slightly gravelly silt/clay and/or silty clayey sands and gravels with occasional, some or many cobbles and boulders.

Made Ground was also encountered in a number of the trial pits to depths ranging from 0.20m to 3.10m below ground level.

Peat and/or peaty silt was encountered at a number of trial pits at a depth ranging from 0.10m to 0.65m below ground level.

Possible weathered bedrock was also encountered in many of the trial pits at depths ranging from 1.30m to 2.80m below ground level.

Intact bedrock was encountered in the following rotary boreholes at depths ranging from 3.40m to 10.80m below ground level: RC 01 and RC 02.

Intact bedrock in general is predominantly described as medium strong to strong thinly bedded siltstone.

Bedrock was not encountered in rotary borehole RC 03 to a depth of 15.00m below ground level before termination.

For detailed descriptions of bedrock and ground conditions encountered please refer to the engineering logs included in appendix 1 and 2 of this report.

The fieldwork was carried out in accordance with IS EN 1997-2 and BS5930, 2015 Code of Practice for Site Investigations with precedence given to IS EN 1997-2 where applicable.

The fieldwork locations were set out on site using a Trimble CU Bluetooth GPS Surveying Unit and the co-ordinates are included on the logs presented in the appendices. All fieldwork co-ordinates are reported to Irish Transverse Mercator (ITM) with Reduced Levels recorded relative to Malin Head Datum and with an accuracy level of + or - 0.10m.

4.0 Laboratory Testing

Representative samples recovered from the boreholes and trial pits were scheduled for testing in the laboratory.

The test schedules were prepared by the Client's Engineer and included some or all of the following tests on disturbed soil samples and soil core samples:

- * Natural Moisture Content.
- * Atterberg Limits.
- Particle Size Distribution.
- Compaction (MCV, CBR).
- * Chemical (pH, Sulphate, Chloride, Carbonate).

The test schedules also included some or all of the following tests on rock core samples:

- Point Load.
- * UCS.

The soil and rock descriptions as noted on the borehole and trial pit logs are in general visual descriptions as observed and logged by our Engineers and are described in accordance with IS EN 1997-2 and BS5930, 2015 Code of Practice for Site Investigations.

Soils descriptions (cohesive or otherwise) are also initially assessed based on the texture and feel' of the soil materials as witnessed by our Geotechnical Engineers and in accordance with IS EN 1997-2 and BS5930.

Where laboratory classification tests have been carried out on soil or rock samples then these visual descriptions have been amended accordingly to take into account the results of these classification tests.

The records of all fieldwork, laboratory test results and photographs are included in the appendices of this Factual Report.

Ronan Killeen Chartered Engineer Irish Drilling Limited November 14th 2019

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

APPENDIX 1

Directors: HERB M. STANLEY, B.Sc., B.A., (Canadium) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., (Secretary) Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

	OJECT:											TRIALPIT:	BP -TP01
				Co Cork								Sheet 1 of 1	1=0
	CLIENT: Coillte ENGINEER: Fehily Timoney & Co									Co-ordinates E 562,872.0		Rig: Hitachi ex Rev: 1	170
				noney & Co	1	1				E 302,072.0	370,400.0		
GR	2nd:					PIT DIRECTION: 0-180 PIT DIMENSION: 1.20 * 4.00m D LOGGED BY: DF			A	Shoring/Support: IV/A Stability: Pit stable during excavation.			
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DESCRIPTION				
-0 -						× ₀ × × × × × × × × × × × × ×		0.50	Gravel	ght grey gravelly SIL' is fine, angular to sub	oangular.		
-			≅ β 1	0.70-0.90				0.70	Gravel	ilty GRAVEL with m is angular.Cobbles ar	e flat and angular.		at Cakhlas ara
- -1 -				0.70 0.50		(a) x x x x x x x x x x x x x x x x x x x		1.50	Gravel	is subangular to angu	ılar.	vith high cobble conter	
- -2 -		<u>‡</u>	В 2 В 2	1.60-1.80				2.50	Orangi: tabular	sh brownish grey slig of siltstone. Gravel is	htly sandy silty gra s angular.	velly COBBLES. Cobl	oles are angular and
TRIAL PIT VANE & WL RISES COOM EP TPS.GPJ IRISHDRL.GDT 5/11/20 LOS COOM EP TPS.GPJ IRISHDRL.GDT 5/11/20 LOS COOM EP TPS.GPJ IRISHDRL.GDT 5/11/20 LOS COOM EP TPS.GPJ IRISHDRL.GDT 5/11/20						ĖNĎ		2.30	TP term	ninated at 2.50m bgl.	Obstruction as pos	sible rock.	
& WL RISES													
₩ Ren	narks: S	l light i	I inflow of	water at 2.0m	L depth. T	I P backí	l filled wit	L h arising	s.				Scale:
TIM .											1:25		
Irish drilling LTD						Ph. Fax							

	OJECT:													BP -TP02
	LOCATION: Bottlehill, Co Cork CLIENT: Coillte ENGINEER: Fehily Timoney & Co CO-ordinates: E 562,899.0 N 590,538.0 Rev: 1													
				nonev & Co								3.0	_	ex170
	und level: n			noney & Co	,					,			DATE: 22.10.20	
GR	OUNDW er strikes: dry	ATE	R se to after:			PIT 1	DIREC DIME GGED 1	NSION	: 0-180 J: 1.20 DF	* 4.00m _D	4 A	B	Shoring/Supp Stability: Pit	oort: N/A stable during excavation.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)			DE	SCRI	PTION	
-0 -			<mark>вания</mark> В 1	0.20-0.40		\$ 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0		0.50	Gravel Sand is	lty SAND and (is fine, angular coarse.	to subangular.			
- 1						80 ~ X			Black s Gravel	ilty peaty grave is angular.Cobł	elly COBBLES. bles are flat, tabul	ar and a	ngular.	
-						**************************************		0.70	and tab	ular.	sandy silty grave angular, mediun		BLES. Cobbles are	subangular to angular
			3B 2	1.20-1.40) o × () × () · () * () · ()		1.30			er content. Bould			BOULDERS. Cobbles
- - -2 -						**************************************		2.70		ninated at 2.70r	n bgl. Obstruction	n as poss	sible rock.	
, , , , , , , , , , , , , , , , , , ,														
TRIAL PIT VANE & WL RISES COOM EP TPS GPJ IRISHDRL.GDT 5/11/20 Ball C-1 Language C-1														
ANE & WL RISES COO	narks: F	Pit drv	during e	xcavation.TP b	ackfille	d with a	risings.							Scale:
<u>></u> Kell	nai K5. 1	ur y	Juling C		MIIIIC	** 1UI A	-miigo.							1:25
TRIAL	N. Carlotte							Irish	ı drill	ing LTD				Ph. Fax

	ROJECT OCATIO			gy Park Co Cork						TRIALPIT: T 03 Sheet 1 of 1			
_	<u>OCATIC</u> LIENT:			CU CUFK					Co-ordinates:	Rig: Hitachi ex170			
- 1				noney & Co)				E 563,096.0 N 589,527.0	_			
	round level									DATE: 22.10.20			
W 1s 2ı	ROUND vater strikes: st: 1.20n nd: rd:	Ro	CR ose to after:			PIT:	DIREC DIME GGED 1	NSION	: 90-270 :: 1.20 * 4.00m D	Shoring/Support: N/A Stability: Pit stable during excavation.			
Denth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DES	CRIPTION			
-0						<u> </u>			Grass over soft black amorphous PEAT.				
						× × ×		0.30	Stiff light grey slightly sandy SILT.				
						× × ×							
L			B 1	0.60-0.80 0.60-0.80		×××							
-			2	0.00-0.80		× · ×							
						× · × · ×							
-1		,				× . × × . ×							
L		1 ₹				*9.× ×		1.20	Stiff damp purple grey slightly gravelly sa Gravel is subrounded. Cobbles are subang	ndy SILT with medium cobble content.			
L						× · · · · · · · · · · · · · · · · · · ·			Gravel is subrounded. Cobbles are subang	ular to subrounded.			
			⊠B 3 ⊗I 4	1.50-1.70 1.50-1.70		8×.×							
Ī			7000	1.30-1.70		© × × × × × × × × × × × × × × × × × × ×							
ŀ						(Dx. x							
-2						× × × × × × × × × × × × × × × × × × ×							
						189 · ×							
r						l'n√∾							
ŀ						× ×							
L						O× ×							
						<u> </u>		2.70	Stiff arev slightly gravelly sandy SILT wit	h low cobble content. Cobbles are angular.			
+			B 5 J 6	2.80-3.00 2.80-3.00		(%) × (%) ×			Sum grey singlify gravery sailty Sill with	ir low cooble content. Coobles are angular.			
-3				2.00-3.00		O×° ******							
						× . (
Ī						% × ×							
ŀ						\$ × \$							
						14, 0X							
3/11/20						100. × × × × × × × × × × × × × × × × × ×							
GDT (× × × ×							
-4			∑ B 7	4.00-4.20		× · · · ·		4.00	Light grey slightly gravelly silty SAND.				
- IRIS			KOKOK						Sand is fine to medium. Gravel is fine to coarse, subangular to sub	rounded.			
S.GPJ						. ox		4.40					
다 그		-	1			END		4.40	TP terminated at 4.40m bgl.				
- 000M													
SES C	.												
M RIS													
⁸ -5													
≸ K	emarks:	Slight	iniiow of	water at 1.2m	ueptn. T	r backi	iiiea wit	11 arising	s.	Scale: 1:25			
TRIAL PIT VANE & WL RISES COOM EP TPS.GPJ IRISHDRL.GDT 5/11/20	DAILLI _B							Irisł	drilling LTD	Ph. Fax			

	DJECT: CATION			gy Park Co Cork							TRIALPIT: T 0 Sheet 1 of 1)6
CLI	ENT: C	oillte	:							Co-ordinates:	Rig: Hitachi ex170)
	GINEER and level: 1			noney & Co)	1				E 564,224.0 N 590,148.0	DATE: 22.10.20	
GRO	OUNDW r strikes: dry	ATE	R se to after:			PIT I	DIREC DIMEN GED 1	NSION	: 0-180 V: 1.20 DF	* 4.30m _D C	Shoring/Support: N Stability: Pit stable	I/A during excavation.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)		DES	CRIPTION	
-0 - - - - -			88 1 888888	0.50-0.70						GROUND - Reeds over black pea silt. round encountered to 0.85m depth n section of pit.		
2			8 2 8 2 8 2	1.30-1.50		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2.00	Cobble	ange brown slightly sandy slightly s are angular to subangular. is fine, angular to subangular.	gravelly SILT with high cobble o	content.
-						**.** *****		2.40	Doggibl	e weathered bedrock - rcovered as	angular to tabular alay amound t	CODDIES of
-			3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.70-3.00				3.00	siltston		angular to tabular clay smeared o	CORRIES OI
TRIAL PIT VANE & WL RISES COOM EP TPS.GPJ IRISHDRL.GDT 5/11/20 B C TRIAL PIT VANE & WL RISES COOM EP TPS.GPJ IRISHDRL.GDT 5/11/20 TRIAL PIT VANE & WL RISES COOM EP TPS.GPJ IRISHDRL.GDT 5/11/20						END			TP terr	inated at 3.00m bgl. Obstruction a		
Rem	narks: I	Pit dry	during ex	cavation.TP b	ackfille	d with a	risings.					Scale:
SIAL PI								Trick	drill	ing LTD		1:25
S MAN	5							11 121	ı uı III	mg L1₽	J	Fax

LOC CLII ENG Groun GRO Water 1st:	ENT: C	: Boroilte : Felm O.D	ttlehill, nily Tin	gy Park Co Cork noney & Co)	PIT	DIME	NSION	Co-ordinates: E 563,964.0 N 590,800 : 90-270 : 1.20 * 4.00m	TRIALPIT: T 07 Sheet 1 of 1 Rig: Hitachi ex170 Rev: 1 DATE: 22.10.20 Shoring/Support: N/A Stability: Pit stable during excavation.
2nd: 3rd: (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DF C	SCRIPTION
-0 - - - -			88 1 88 J 2	0.70-0.90 0.70-0.90		× × × × × × × × × × × × × × × × × × ×		0.60	Soft brown amorphous PEAT with lamin	nations of soft light grey silt.
-			В 3 В 3	1.50-1.70		* * * * * * * * * * * * * * * * * * *		1.30	Grey silty gravelly SAND with medium Gravel is fine to coarse, angular to subar	cobble content. ngular. Cobbles are subangular.
- - - -3		<u>‡</u>	83 4 83 4 83 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.50-2.70					2.60m: with medium boulder content.	
						©×O×O·XO·XO·XO·XO·XO·XO·XO·XO·XO·XO·XO·XO·XO	1	4.00	TP terminated at 4.00m bgl.	
-5 Rem	arks: S	Slight i	inflow of	water at 3.0m	depth. T	TP backf	filled wit		drilling LTD	Scale: 1:25 Ph. Fax

PROJECT: Coom Wind Farm LOCATION: Bottlehill, Co Cork CLIENT: Coillte Co-ordinates: Rig: Hitachi ex170													
				00 00111						Rig: Hitachi ex170			
			_	noney & Co)	1			E 564,627.2 N 592,916.3	Rev: 1			
	und level: 2 OUNDW					DIT	DIDE	TTION	3.50	DATE: 17.6.19 Shoring/Support: N/A			
Wat 1st: 2nd: 3rd:	:	Ros	se to after:			PIT:	DIKE DIME GGED	NSION	: 000-180 : 1.20 * 3.50m D	Stability: Pit stable.			
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DESCI	RIPTION			
-0 - -						**************************************	245.26	0.80	Grass over firm orange and purplish brown S subrounded.	ILT with cobbles. Cobbles are subangular to			
-1 -			3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.80-1.00			243.20	0.80	Purplish brown sandy silty subangular to sub cobble content. Cobbles are tabular and flat s Cobble content increasing with depth.	rounded fine to coarse GRAVEL with high ubangular to subrounded.			
-2			3 2 2	1.80-2.00			244.06	2.00	Possible SILTSTONE rock.				
-			B3	2.20-2.40			243.56	2.50	Recovered as purplish brown silty gravelly fl siltstone BOULDERS. Gravel is angular to s	at and subangular siltstone COBBLES and flat ubangular medium to coarse.			
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						END			TP terminated at 2.50m bgl. Obstruction as s				
Rei	marks: T	P dry	on excav	ation. TP back	filled w	ith arisi	ngs.			Scale: 1:25			
S. S	Light Control of the						iris	h dri	ling ltd loughrea	Ph. Fax			

	PROJECT: Coom Wind Farm OCATION: Bottlehill, Co Cork CLIENT: Coillte CNGINEER: Fehily Timoney & Co TRIALPIT: BP2-TP02 Sheet 1 of 1 Rig: Hitachi ex170 Rev: 1													
CLI	IENT: C	oillte								Rig: Hitachi ex170				
	GINEER: and level: 2			noney & Co)				E 564,634.8 N 592,897.	6 Rev: 1 DATE: 17.6.19				
GR	OUNDW. er strikes: dry	ATE				PIT 1	DIREC DIMEN GED I	NSION	: 090-270	Shoring/Support: N/A Stability: Pit stable.				
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DES	SCRIPTION				
-0 - - - - -1							244.66	1.10	black amorphous PEAT.	brown gravelly cobbly SILT mixed with plastic				
-			3 1 2200000000000000000000000000000000000	1.10-1.30			243.76		Purple and orangish brown very sandy ve high cobble content.	ry silty subangular fine to coarse GRAVEL with				
-2 - -			BB 2	2.00-2.20		*		2.70	Purplish brown sandy silty gravelly angul Weathered SILTSTONE rock.	ar to subangular COBBLES. Gravel is coarse.				
IRISHDRL.GDT 15/11/19			3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.80-3.00			242.26	3.50	Recovered as flat and angular cobble and					
TRIAL PIT VANE & WL RISES COOM WF TPS FILE 1 W LAB SEPT 24 2019.GPJ IRISHDRL.GDT 15/1/19						ÉND			TP terminated at 3.50m bgl. Obstruction	as siltstone rock.				
Ren	narks: T	P dry	on excav	ation. TP back	filled w	ith arisi	ngs.			Scale:				
SIAL PI							jricl	h dri	ling ltd loughrea	Ph.				
	Th.						11 121	uull	nng nu roughtea	Fax				

	PROJECT: Coom Wind Farm OCATION: Bottlehill, Co Cork CLIENT: Coillte CNGINEER: Fehily Timoney & Co TRIALPIT: BP2-TP03 Sheet 1 of 1 Rig: Hitachi ex170 Rev: 1														
CI	JENT: Co	oillte								Rig: Hitachi ex170					
				noney & Co)				E 564,649.4 N 592,837.2						
GF	l:	ATE				PIT :	DIREC DIME GGED	NSION	: 090-270 4.00 DF C	DATE: 17.6.19 Shoring/Support: N/A Stability: Pit stable.					
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DESC	CRIPTION					
-0						<u> </u>	244.65	0.30	Plastic black silty amorphous PEAT.						
-			д в 1	0.50-0.70			5	0.80		m and fine GRAVEL with high cobble content.					
-1 - - - - -			3 2 2 See See See See See See See See See	1.60-1.80		**			Purplish brown slightly silty sandy gravelly angular to subangular medium.	subangular siltstone COBBLES. Gravel is					
-3			3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.50-2.70			242.45	2.50	Weathered SILTSTONE rock. Recovered as flat tabular blocky and angula siltstone with some grey slightly sandy slight	r gravel cobble and boulder sized clasts of ntly silty gravel.					
			B 4	3.30-3.50		END	241.45	3.50	TP terminated at 2.50m hal. Obstruction as	siltstana raak					
2 4 1 24 20 8 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1						END			TP terminated at 3.50m bgl. Obstruction as	SHISIUIL TUCK.					
Re	marks: T	TP dry	on excav	ation. TP back	filled w	ith arisi	ngs.			Scale:					
Y Y	Mila						iris	h dri	lling ltd loughrea	1:25 Ph. Fax					

	PROJECT: Coom Wind Farm OCATION: Bottlehill, Co Cork CLIENT: Coillte TRIALPIT: BP2-TP04 Sheet 1 of 1 Rig: Hitachi ex170													
				00 00111						Rig: Hitachi ex170				
				oney & Co)	Ι			E 564,655.2 N 592,90	07.9 Rev: 1 DATE: 17.6.19				
GR	OUNDW er strikes: 3.00m	ATE				PIT 1	DIREC DIMEN GED I	NSION	: 000-180	Shoring/Support: N/A Stability: Pit stable.				
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	D	ESCRIPTION				
-0							244.22	0.30	angular to subangular.	ly CLAY with high cobble content. Cobbles are				
- 1							244.07	0.45	Plastic black amorphous PEAT.					
-						**************************************	243.52	1.00	Purplish brown slightly sandy gravelly subangular and flat of siltstone.	SILT with high cobble content. Cobbles are				
-1 - -	alar to angular fine to coarse GRAVEL with high													
-2 - -			B 2	2.00-2.20			241.72							
PT 24 2019.GPJ IRISHDRL.GDT 15/1/1/9		Ţ	в 3 виния	2.80-3.00			240.62	2.80	Weathered SILTSTONE rock. Recovered as angular cobble sized cla	sts of purple siltstone.				
TRIAL PIT VANE & WL RISES COOM WF TPS FILE 1 W LAB SEPT 24 2019, GPJ IRISHDRL, GDT 15/1/1/19 BA C						END			TP terminated at 3.90m bgl. Obstructi					
Nen En	narks:	Seepag	e of wate	r at 3.00m bgl	. TP bac	kfilled v	vith arisi	ngs.		Scale:				
TRIALP	į.						irisl	h dril	lling ltd loughrea	1:25 Ph. Fax				

	DJECT:			Farm Co Cork							TRIALPIT: B	P3-TP01
	ENT: C			COCOIK						Co-ordinates:	Rig: Hitachi ex17	70
ENC	GINEER:	: Fel	nily Tin	noney & Co)					E 570,685.1 N 594,443.	1 Rev: 1	
	ond level: 2									3.30	DATE: 18.6.19	27/1
	er strikes: dry		se to after:			PIT:	DIREC DIME GED 1	NSION	: 090-2 l: 1.40 DF	70 A A A A A A A A A A A A A A A A A A A	Shoring/Support: Stability: Pit stab	N/A le.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)		DES	SCRIPTION	
-0 -							289.06	0.60		OIL: Grass over dark brown peaty s		
-1			B 1 2 2 8 3 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.70-0.90 0.70-0.90		- 47/0 - 47/0 - 7/1 - 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	288.56	1.10	Stiff pu	amp yellowish brown slightly grav	dy SILT with high cobble conte	ent. Gravel is
-2			3 3 3 D 4	1.30-1.50 1.30-1.50		* \(\) \(\		2.40	subang	ular to subrounded fine to coarse.	Cobbles are subangular of silts	tone.
.GDT 15/1/19			BB 5	2.50-2.70					boulder of silts	rplish brown slightly gravelly san r content. Gravel is subangular to cone. Boulders are of siltstone. Bou	dy SIL1 with high cobble conte subrounded fine to coarse. Cob ulders are up to 800mm in leng	ent and medium bles are subangular th.
24 2019.GPJ IRISHDRI			B 6	3.30-3.50		* × × × × × × × × × × × × × × × × × × ×	285.86	3.80				
TRIAL PIT VANE & WL RISES COOM WF TPS FILE 1 W LAB SEPT 24 2019, GPJ IRISHDRL, GDT 15/11/19 **A						END				ninated at 3.80m bgl. Obstruction	as boulders.	
≸ Rem	narks: 7	TP dan	np from 0	.60m to 1.10m	bgl. TP	backfil	led with	arisings				Scale:
TRIAL P	6						iris	h dril	lling l	td loughrea		1:25 Ph. Fax
	-											

	PROJECT: Coom Wind Farm OCATION: Bottlehill, Co Cork CLIENT: Coillte CNORMED CONTROL CONTRO													
				nonev & Co		_				,401.4	_			
Grou	und level: 2	282.24	m O.D.	noney & Co)					,	DATE: 17.6.19			
			R se to after:			PIT	DIREC DIME GED 1	NSION	1: 090-270 1: 1.50 * 4.20m DF	В	Shoring/Support: N/A Stability: Pit stable.			
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)		DESCRI	PTION			
-0 - - -		<u></u>	B 1 D 2	0.40-0.60 0.40-0.60			281.34	0.90	Stiff orangish brown CLAY with lo 0.00m to 0.30m: with plastic and gr	w cobble co ass on easte	ontent. Cobbles are subangular to subrounded. ern side of TP.			
-1 - - - -			3 3 3 3	1.40-1.60			201.34	0.50	content and medium boulder conten	nt. Gravel is Boulders are	ly gravelly sandy CLAY with high cobble subangular to subrounded medium to coarse. e subangular. Boulders are up to 600mm in			
15/1/19			B 4 D 5	2.60-2.80 2.60-2.80										
7 24 2019.GPJ IRISHDRL.GDT			3 6 10000000	3.30-3.50			278.34	3.90						
TRIAL PIT VANE & WL RISES COOM WF TPS FILE 1 W LAB SEPT 24 2019, GPJ IRISHDRL.GDT 15/1/19						END	210.34	3.70	TP terminated at 3.90m bgl. Obstruc	ction as bou	ilders.			
Ren	narks:	Seepag	ge of wate	er at 0.60m bgl	. TP bac	kfilled v	vith arisi	ngs.			Scale:			
IRIAL PI	in the second						iris	h dri	lling ltd loughrea		1:25 Ph. Fax			

PROJECT: Coom Wind Farm LOCATION: Bottlehill, Co Cork CLIENT: Coillte ENGINEER: Fehily Timoney & Co CLIENT: Collete ENGINEER: Fehily Timoney & Co ENGINEER: Fehily Timoney & Co													
Grou GRO	nd level: 2 DUNDW r strikes: 2.00m	234.53 ATE	m O.D.	noney & Co)	PIT :	DIRE(DIME! GGED !	CTION NSION BY:	DATE: 19.6.19 I: 090-270 N: 1.30 * 4.10m D C Shoring/Support: N/A Stability: Pit stable.				
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DESCRIPTION				
-0 -			3 1	0.30-0.50			234.33		Grass over plastic blackish brown amorphous PEAT. Firm brown slightly sandy SILT with medium cobble content. Cobbles are su				
- -1 -			B 2	1.00-1.20		(A)			Purplish brown very silty very sandy angular to subangular fine to coarse GR high cobble content. Cobbles are subangular to subrounded.	AVEL with			
-		<u>↓</u>						2.00	1.50m: with medium boulder content. Boulders are subangular.				
-		=	вания В 3	2.20-2.40			231.83	2.70	Weathered SHALE/MUDSTONE rock. Recovered as angular cobble sized clasts of shale/mudstone with clay smear.				
ISHDRL.GDT 15/11/19						END			TP terminated at 2.70m bgl. Obstruction as rock.				
VLAB SEPT 24 2019.GPJ IR													
TRIAL PIT VANE & WL RISES COOM WF TPS FILE 1 W LAB SEPT 24 2019, GPJ IRISHDRL.GDT 15/1/19													
RIAL PIT VANE & WL RISE.	narks: S	Беерад	ge of wate	er at 2.00m bgl	TP bac	kfilled v			So So Iling ltd loughrea Ph. Fax				

PROJECT: Coom Wind Farm LOCATION: Bottlehill, Co Cork CLIENT: Coillte Co-ordinates: Rig: Hitachi ex170														
				Co Cork										
				noney & Co)				E 568,245.6 N 593,744.3 Rev: 1					
Gro	und level:	328.92	m O.D.	v					DATE: 18.6.19					
			R se to after:			PIT	DIREC DIMEN GED 1	NSION	1: 090-270 3.30 Shoring/Support: N/ Stability: Pit stable.	Α				
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DESCRIPTION					
-0			<mark>лания</mark> 1	0.20-0.40		×0	328.32	0.60	Firm purplish brown very gravelly very silty SAND.					
Stiff purple CLAY with high cobble content. Cobbles are subangular. 1 327.62 1.30 Weathered SHALE/MUDSTONE rock. Recovered as angular flat and tabular gravel and cobble sized clasts of purplish shale/mudstone.														
-2 -			STATE OF THE STATE	1.30-1.50					Recovered as angular flat and tabular gravel and cobble sized clasts of purp	olish brown				
TRIAL PIT VANE & WL RISES COOM WF TPS FILE 1 W LAB SEPT 24 2019; GPJ IRISHDR. GDT 15/11/19 BA C		<u>+</u>	18 3 3 S S S S S S S S S S S S S S S S S	3.00-3.20		END	324.92	4.00	TP terminated at 4.00m bgl. Obstruction as rock.					
IAL PIT VANE & WL RISES COOM WF TI	marks:	Seepag	ge of wate	r at 3.50m bgl	. TP bac	kfilled v				Scale: 1:25				
₹	ily,						ıris	n dri		ax				

	OJECT:									TRIALPIT: TP-T22 Sheet 1 of 1
CLI	IENT: C	oillte	:						Co-ordinates: E 568,917.9 N 593,935	Rig: Hitachi ex170 Rev: 1
	GINEER: und level: 3			oney & Co	•				E 300,717.7 N 373,73.	DATE: 18.6.19
GR	OUNDW. er strikes: 2.00m	ATE				PIT 1	DIREC DIMEN GED 1	NSION	: 000-180 4.50 A : 1.50 * 4.50m D	Shoring/Support: N/A Stability: Pit unstable. Sidewall collapse from 2.00m bgl.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DI	ESCRIPTION
-0						<u> </u>			Plastic black amorphous PEAT.	
- - -			<mark>вана</mark> Такана	0.50-0.70		X	377.41	0.30	Soft orangish brown slightly gravelly ve	ery silty fine and medium SAND.
-1 - -			3 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.50-1.70				1.20	Purplish brown very silty very sandy G subangular to subrounded.	RAVEL with high cobble content. Cobbles are
-2 -		<u>‡</u>	3	2.40-2.60			375.81	1.90	Weathered SHALE/MUDSTONE rock. Recovered as flat and angular cobble si	zed clasts of purple mudstone/shale.
SEPT 24 2019.GPJ IRISHDRL.GDT 15/11/19			33 4 4 See See See See See See See See See	3.40-3.60						
TRIAL PIT VANE & WL RISES COOM WF TPS FILE 1 W LAB SEPT 24 2019, GPJ IRISHDRL,GDT 15/1/19						END	373.71	4.00	TP terminated at 4.00m bgl. Unable to	keep TP open - sidewall collapse.
Ren	narks: N	/Iodera	ate ingres	s of water at 2	.00m bg	l. TP ba	ckfilled	with aris	ings.	Scale:
RIAL PI							jrisl	h dri	ling ltd loughrea	Ph.
→ [*** *** *** *** *** *** *** *** ***	i .								-B	Fax

	DJECT:			Farm Co Cork						TRIALPIT: TP-T23 Sheet 1 of 1
CLI	ENT: C	oillte							Co-ordinates:	Rig: Hitachi ex170
	GINEER: und level: 3			oney & Co)	<u> </u>			E 569,779.9 N 593,923.6	Rev: 1 DATE: 18.6.19
GRO	OUNDW er strikes: dry	ATE				PIT 1	DIREC DIMEN GED 1	NSION	: 090-270 : 1.50 * 4.40m DF	Shoring/Support: N/A Stability: Pit stable.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DESC	CRIPTION
-0							311.08	0.35	Stiff purple slightly sandy CLAY with low	cobble content.
- - -			33 1 1 1 1 1 1 1 1 1 1	0.40-0.60		(A)	310 53		Purple and orange silty gravelly fine to coar subangular to subrounded fine to coarse. Co	se SAND with low cobble content. Gravel is obbles are subrounded.
-1 -			3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.20-1.40				0.50	Purple very silty fine to medium SAND and cobble content. Cobbles are subangular to s	I subrounded fine to medium GRAVEL with low ubrounded of siltstone.
- -2 - -			8 3 8 3	2.20-2.40						
TRIAL PIT VANE & WL RISES COOM WF TPS FILE 1 W LAB SEPT 24 2019, GPJ IRISHDRL.GDT 15/11/19 LAB CS COOM WF TPS FILE 1 W LAB SEPT 24 2019, GPJ IRISHDRL.GDT 15/11/19 LAB CS			33 4 0 5 8 8 8 8	3.20-3.40 3.20-3.40			308.23	3.20	Stiff purple slightly gravelly sandy CLAY v content. Gravel is subangular to subrounde Boulders are angular.	vith medium cobble content and low boulder d fine to coarse. Cobbles are angular to rounded.
VF TPS FILE 1 W L/						END	307.13	4.30	TP terminated at 4.30m bgl.	
E & WL RISES COOM N										
Ren	narks: T	TP dry	on excav	ation. TP back	filled w	ith arisi	ngs.			Scale:
TRIAL P	5						irisl	h dri	ling ltd loughrea	1:25 Ph. Fax

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

APPENDIX 2

Directors: HERB M. STANLEY, B.Sc., B.A., (Canadium) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., (Secretary) Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

Project	Coom	Wind Fa	rm				Loca					DRILLI	HOLE	. No
						17 1/		tlehill, Co Cor				R	C01	
Job No	01001	06	Date 07-	-10-19	Gro	ound Level (m		Co-Ordinates		N 50	2 (12 (
Enginee	019C1	06	0 /-	-10-19		226.46		E 566,	,/41.3	N 59	3,612.6	Sheet	1 of	1
_		Timoney	& Co											1
_								TD ATA				Rev. DR	<u>1F1</u>	<u>4</u>
		ΓAILS (SPT)	D # 1	De	pth		3	TRATA DESC	RIPT	ION			gg	imen
Depth Date	TCR (SCR) RQD	Fracture Spacing		Legend (Thic ness)	Ř- ├─	Discontinuities		Detail		1011	Main		Geology	Instrument/ Backfill
0.00	RQD	Браста	226.41	_ /		0.00 - 2.60 : ov				PHALT.			eq	
2.00	15 (-)	NA	224.46	-(1.9	5)				lime		OUND: Suba RAVEL. vered).	ngular fine		
2.00	67	2.00(38/75n	223.86	(0.6					No Dri	recovery llers con	nment: clay a	nd gravel.		
3.20	(8)	NI	223.06	(0.8	2	2.60 - 3.40 Norock.	n-intact as	weathered	Rec	covered a	SILTSTONE as angular fin clasts of pur ourple silt.	e to coarse		
4.50	100 (52) 36		====	× × × × × × × × × × × × × × × × × × ×	3 s d	8.40 - 7.50 Dis paced, locally lipping 16 to 1 planar, smooth, hick purple silt	very clos 8 and 82 with 0.5	ely spaced, to 84°,	Stro bed SIL 3.80	ong local ded purp TSTON 0m to 3.9	ly medium st ble fine grain E. 90m: firm pu	ed		
6.10	100 (52) 0	NI		X	0)				silt.	Gravel	s angular fin	e of siltstone.		
07.10 7.50	100 (60) 41	9	218.96	\(\hat{\chi} \hat{\chi} \hat{\chi} \) \(\times \times \hat{\chi} \) \(\times \times \times \times \hat{\chi} \) \(\times \times \times \times \hat{\chi} \) \(\times \times \times \times \times \hat{\chi} \) \(\times \tim	.50									
									BH inst	terminatruction.	ted at 7.50m	bgl on REs		
	Dri			d Water Ob						Flush		GENI		
Date	Tir	- 1			Core D mm	oia Wate Strike S		· '	Го (т)	Type	Return (%)	REMA	ARKS	j
07-10-19	9 15.	00 7.5	3.00	99	63		3.00	0	7.50	water	100	BH reinstated.		
All dime	ensions i	n Client:	Coillte	1	Meth	nod/ Hydre t Used	eq		I	Bit H Design	Q Drill DK	ler Logge	d By EA	 T

Location

DRILLHOLE No

Project	Coom	Wind F	arm						Loc	ation						DRILLH	OLE	No
										ottlehill, Co C						RC	02	
Job No			Date	08-1	10-19		Grou	and Level (Co-Ordina						KC	UZ	
	019C1	06		08-1	10-19			226.0)5	E 56	56,8	76.1	N 59	93,433.7				
Enginee															5	Sheet	1 of	2
	Fehily'	Timoney	/ & Co												F	Rev. DRA	FT	
RU	N DE	TAILS							1	STRATA								Instrument/ Backfill
Depth	TCR (SCR)	(SPT) Rec	d'cd ,	. 1	Dep	th			DES	SCR	RIPT	ION				Geology	rum kfill
Date	RQD	Fractu Spacii	16 1 7	vel L	Legend	(1 mck ness)	Di	scontinuiti		Det	tail			Main			Geo	Inst
0.00			226	6.02 °	000	0.0	0.0	00 - 10.80	: overburd	en.			PHALT.		~			
				c	000	-						asso	orted gre	to subangula y limestone a	and gr	ev purple		
	10			l	000	- -						and	dark bro	own sandston	e GR	AVEL.		
	(-)				000	-												
				c		- -												
						-												
2.00		2.00 (2	9)		000	- -						2.0	0m: dens	se				
				c	0 0°	- -							o 1111. u o 111.					
	13			1	0 10	- -												
	(-)			l l		-												
				c	0 = 0	- -												
3.50		3.50 (25/0	mm)	c c		- - -												
				4	000	- -												
	13 (-)			C	0 00	-												
	-			۔ ار		- -												
5.00				l	000	- - -												
5.00		5.00 (0/01	nm)		000	-												
		NTA.				(10.7	7)											
	13 (-)	NA		l c	000													
	-				000	-												
(50				-	000	-												
6.50		6.50 (4	9)	۔ ا		-						6.5	0m: dens	se.				
					0 0 0	-												
2	13 (-)			1	000	-												
5	-			1		-												
8.00				1	000	-												
8.00		8.00 (25/0	mm)	C	0 =°4	-												
				١,٠		- -												
	13 (-)			- 1	27 21	- -												
4	-			C	0 0°0	-												
9.50					0000	- -												
9.30		9.50 (0/01	nm)	ı,	000	-												
				,	000	-												
3	Dr	illing Pr	ogress	and	Water	Obs	ervati	ons			Rota	ary l	Flush			GENE	RAL	
Date	Tiı				asing Di		ore Dia mm		ater Standing		_) (m)	Type	Return (%)		REMA		
				усриг			111111	Suike	Standing	0	14	4.20	polyme	100	5 lit	res of polyd	rill use	ed. BH
															reins	stated.		
3																		
2																		
5																		
5																		
All dime	ensions	in Client	: Coillte				Metho	d/ Hyd	lrea	П		1	Bit H	IQ Dril	ler	Logged	Bv	
Scale	etres 1:62 5						Plant 1	Used	vq			i	Design	DK		Logged	ÉΑ	Γ

Project	Coom V	Vind Far	m					Loc	ation				DRILL	HOLE	No
7.1.37			.				1/		ttlehill, Co Cor				R	C02	
Job No	100104		Date 08-	-10-19 -10-19			Level (m ()D)	Co-Ordinates		1 NI 502 /	122 7			
Engineer	19C106)	08-	-10-19			226.05		E 300,	,8/0.1	1 N 593,4	+33./	Sheet	2 of	2
-	ehily Ti	monev &	& Co										Rev. DR		2
	N DETA								STRATA				Rev. DR	/ 1)tr
	TCR (SCR)	(SPT)	Red'cd		Deptl	1		•	DESC	RIPT	TION			ogy	ume
Date	(SCR) RQD	Fracture Spacing	T arral	_	(Thick- ness)	Discon	tinuities		Detail			Main		Geology	Instrument/ Backfill
	27 (0) 0		215.25		10.86					ass and (co.	orted grey li l dark browr <i>ntinued)</i>	mestone an sandstone			
11.00	100 (68) 39	12		× × × × × × × × × × × × × × × × × × ×	-	spaced dipping with 0. silt sme	, locally v g 16 to 18 5 to 16mr ear.	ery clo	uities, closely sely spaced, sed, smooth, brownish pink	bro SII	edium strong own slightly s LTSTONE.	thinly bedesandy fine	ded greenish grained		
12.50	100 (26) 0	NI		X X X X X X X X X X X X X X X X X X X	(3.40)	subvert black s	mear and	lanar, s minor o	oint, smooth, with dark orange non-intact.	slig	50m to 12.6 ghtly gravelly angular fine	y silt. Grav	el is		
08.1014.20	100 (72) 52	5	211.85	× × × × × × × × ×	14.20	0				gre	60m to 14.2 sy sandy.		ning greenish		
DL AGS UK DH (SPTS) COOM WF RC FILE 1 OCT 10 2019.GPJ IDL TP TEMPLATE.GDT 10/10/19 Data											truction.				
<u>п</u>		Ť	gress and				Water				Flush			ERAL	
UK DH (SPTS) COOM WF RC FILE 000 Date 0000 NF RC FILE 0000 NF	Time 16.00			Casing D 99	ia r	re Dia S	Water trike St	anding 4.00	From (m)	<u>Γο (m)</u>	Type Ro		REM. 5 litres of polyreinstated.	ARKS ydrill use	
All dime met Scale		Client: 0	Coillte	'	N F	Method/ Plant Used	Hydrec	1	1		Bit HQ Design	Drille DK	r Logge	ed By EA	Г

	Project	Coom	Wind Fa	arm					Loca	ition					I	DRILLH	IOLE	No
									Bot	tlehill, Co C	Cork					RC	.U3	
	Job No			Date 04	-10-19		Groui	nd Level (Co-Ordina						NC	.03	
	20	019C1	06	04	-10-19			51.87	7	E 58	32,096	.2 N 59	94,256	.2				
	Enginee														Sl	heet	1 of	2
	I	Fehily'	Timoney	& Co											R	ev. DRA	FT	
	RU.	N DE	ΓAILS						S	TRATA							_	Instrument/ Backfill
	Depth	TCR (SCR)	(SPT) Fractur	Red'cd	ļ ,	Dept	:h			DES	SCRIP	TION					Geology	Z I
	Date	RQD	Spacin		Legend	ness)	Dis	continuitie		Det	ail		M	1ain			Gec	Inst Bac
	0.00			51.6	7 ************************************	0.2	0.0	0 - 15.00	overburde	n.		SPHALT.		1.	1			
					18 V 8	[(0.60)					si	ngular fin ltstone GF	e and m RAVEL	with a	a little	e purple		
		70		51.0	7 <u>9 ^ 9</u> * * · × ·	- 0.8	50				Si	lt. irm slightl	v condv	cliab	ly gray	uolly.		
		(-) -			× .× .×	-					cl	avev SIL	Γ. Sand	is fine	e. Grav	el is		
					× _{o×} ·×	-					su	abrounded ssorted bro	fine an wn san	d med dstone	ium of and a	f ssorted		
	2.00				× × ×	Ē					gı	rey limesto	one.					
	2.00		2.00 (30)	, o, x, "	_												
					× × × ×	-												
		73 (-)			×° × ×	-												
		-			*° ·×	-												
	3.50				× •×	-												
			3.50 (33)	*×	-												
		13			×	[-(6.50)												
		(-)			, ox.	‡ `												
		_			× × ×	Ė												
	5.00				*°. ×	_												
			5.00NA42)	× × ×	-												
		27			××													
		(-)			××	Ė												
					××××													
	6.50		6.50 (31	,	×	-												
			0.50 (51	,	× · · ×	F												
119		33		44.5	·°×·	7.3												
10/10		(-)		44.3	®0x∞ 80						S	ubangular	to subro	ounde	d fine t	to coarse		
3DT					X	-						ssorted gre rey and bro						
ATE.(8.00	67	8.00 (25/0r	nm)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-					W	ith a little	pinkish	brow	n silt.	.,		
MPL		(-)	, i		0 × 0 ×0 0×0	Ė												
P TE	8.60	-			×0 =×0 0 × 0 8 0× 8	Ė												
디		56 (-)			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ė												
ЗРJ	0.50	-			* 0 x × 0	F												
019.0	9.50		9.50(38/75	mm)		F												
T 10 2					\$0													
00		Dri	Illing Pro	ogress an			rvatio	ons —			Rotary	Flush				GENE	RAI	
Ę,	Date	Tin			Casing th D		re Dia mm		nter Standing	From (m)			Return	n (%)		REMA		
RCF				Бср	un D	ria	111111	Suike	Standing	0		polyme	10	00	5 litre	es of polyd	lrill use	d. BH
W W															reinst	ated.		
2000																		
TS) (
4 (SP																		
ᆽ																		
IDL AGS UK DH (SPTS) COOM WF RC FILE 1 OCT 10 2019.GPJ IDL TP TEMPLATE.GDT 10/10/19	All dime		in Client:	Coillte		<u> </u>	Method	l/ Hyd	rea				IQ	Drill	er	Logged	By	
디	l me	etres 1:62.5]	Plant U	sed	- • 1			Design	-	DK		- 3634	EA	Γ

Bottchall Co Cork		Project	Coom	Wind Fa	ırm					Loca	ntion					I	DRILLH	OLE	No
2019C106																	RC	103	
Solution					04	-10-19		Grou									110	,03	
Febrily Timoney & Co				06	04	-10-19			51.87	7	E 58	32,096	.2 N 59	94,256	5.2	-			
RUN DETAILS		_		ъ.	0.0														2
11.00 11.00 (800mm)					& Co											R	ev. DRA	FT	
11.00 11.00 (800mm)		RU								S								Σ;	nent/
11.00 11.00 (800mm)			TCR (SCR)	(SPT) Fractur	Reucu	Legend	Dept (Thick-	. —					TION					golog	strun
11.00		Date	RQD	Spacing	g Level		ness)	Dis	continuiti	es	Det		uhanaular			d fina t	to goorge	<u> </u>	Ba
11.00						1x0 ∧ x0	_					as	sorted gre	v limes	stone a	ind ass	orted		
12.50 12.5						20,0 ×0						W	ith a little	own sar pinkish	ndston brow	e GRA n silt.	VEL		
12.50 12.5		11.00		11.00 (0/0	>		-					(c	ontinued)						
12.50 12.5				11.00 (0/0m	m)	0 0 0 0 8	(7.70)												
12.50			27			1×0~×0	[
12.50			(-) -			× ×	E												
14.00						8 5 8	-												
14.00		12.50		12.50N A(49)	,	2000						13	2 50m: dei	nce					
14.00				141		x0 ox0						12	2.30III. uc i	1150.					
14.00 14.00 (250mm)						8 2 8	-												
14.00			-			L 🔷													
14.00 (250mm)		14.00				8 V 8	[
BH terminated at 15.00m bgl on REs instruction. Solid Sylidad Solid Sylid		14.00		14.00 (25/0n	ım)	1×0,0×0													
Section Sect						* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-												
Drilling Progress and Water Observations			-			0 X 0 X	-												
Drilling Progress and Water Observations Rotary Flush From (m) To (m) Type Return (%) S litres of polydrill used. Bireinstated. Bit HQ Driller Logged By EAT Content of the metres Client: Coillte Method/ Hydreq Bit HQ Driller Logged By EAT Content of the metres Client: Coillte Method/ Hydreq Bit HQ Driller Logged By EAT Content of the metres Client: Coillte Method/ Hydreq Bit HQ Driller Logged By EAT Content of the metres Client: Coillte Method/ Hydreq Bit HQ Driller Logged By EAT Content of the metres Client: Coillte Method/ Hydreq Bit HQ Driller Logged By EAT Content of the metres Client: Coillte Method/ Hydreq Bit HQ Driller Logged By EAT Content of the metres Client: Coillte Content of the metres Clien		04.1015.00		15.00(55/150	36.87 mm)	0/X-0/	- 15.0 -	00				В	H termina	ted at 1	5.00m	ı bgl oı	n REs		RSO
Drilling Progress and Water Observations Rotary Flush From (m) To (m) Type Retum (%) Stitles of polydrill used. Bireinstated. Bit HQ Driller Logged By Design Dix EAT							-												
Drilling Progress and Water Observations Date Time Depth Depth Spring Name Strike Standing mm Strike Standi							<u> </u>												
Drilling Progress and Water Observations Date Time Depth Dept							_												
Drilling Progress and Water Observations Date Time Depth Depth Sim Od-10-19 15.30 15.00 6.00 99 63 2.50 Shirts of polydrill used. Birding metres Scale 1:62.5 Shirts of polydrill used. Birding metres Shirts of polydrill used. Birding metres Shirts of polydrill used. Birding metres Shirts of polydrill used. Birding me							-												
Drilling Progress and Water Observations Date Time Depth Dep							-												
Drilling Progress and Water Observations Date Time Depth Dep	6						_												
Drilling Progress and Water Observations Rotary Flush From (m) To (m) Type Return (%) Stirker Standing From (m) To (m) Type Return (%) Stirker Standing From (m) To (m) Type Return (%) Stirker Standing From (m) To (m) Type Return (%) Stirker Standing From (m) To (m) Type Return (%) Stirker Standing From (m) To (m) Type Return (%) Stirker Standing From (m) To (m) Type Return (%) Stirker Standing Type	/10/1																		
Drilling Progress and Water Observations Rotary Flush From (m) To (m) Type Return (%) Stirke of polydrill used. Bereinstated. Bit HQ Driller Cored By Bit HQ Driller Cored By Cored B	T 10						E												
Drilling Progress and Water Observations Date Time Depth Dep	E.GL						E												
Drilling Progress and Water Observations Date Time Depth Dep	PLAT						-												
Drilling Progress and Water Observations Date Time Depth Depth Depth Depth Strike Standing O4-10-19 15.30 15.00 6.00 99 63 2.50 All dimensions in metres Scale 1:62.5	TEM																		
Drilling Progress and Water Observations Rotary Flush From (m) To (m) Type Return (%) REMARKS	LTP																		
Drilling Progress and Water Observations Date Time Depth Depth Depth Depth Strike Standing Od-10-19 15.30 15.00 6.00 99 63 2.50 Return (%) All dimensions in metres Scale 1:62.5 Return (%) Method/ Hydreq Plant Used Return (%) Method/ Hydreq Plant Used Return (%) Method/ Hydreq Plant Used Return (%) Bit HQ Design Driller DK Logged By EAT	∑ □																		
Drilling Progress and Water Observations Date Time Depth Depth Depth Depth Strike Standing Od-10-19 15.30 15.00 6.00 99 63 2.50 Solitons Dia Depth De	19.GF																		
Drilling Progress and Water Observations Date Time Depth Dep	0 20																		
Date Time Depth Depth Depth Strike Standing O4-10-19 15.30 15.00 6.00 99 63 2.50 From (m) To (m) Type Return (%) Sitres of polydrill used. BH reinstated. All dimensions in metres Scale 1:62.5	2CT		D•:	lling Dec	orega ara	1 Weter	r Obac	rvotic	nc		<u> </u>	P otom	, Eluch				OD) ID:	D 4 T	
All dimensions in metres Scale 1:62.5 Septimary Depth Spia mm Strike Standing From (iii) 10 (iii) 179e Return (70) REMARKS Standing 15.00 6.00 99 63 2.50 5 litres of polydrill used. BH reinstated.	LE 1 (Dete								ater				Ratur	n (%)				
All dimensions in metres Scale 1:62.5 Method/ Hydreq Plant Used Bit HQ Design DK EAT	3C FIL	04 10 10			_	1	1a	mm	Strike	_	F10III (M)	10 (m	1) 1 ype	Ketun	11 (70)	5 1:4			ч рп
All dimensions in metres Scale 1:62.5 All dimensions in Method/ Hydreq Plant Used Method/ Hydreq Design Driller DK EAT	WFF	04-10-19	13	15.	0.00	, 9	7	03		2.30						reinst	tated.	ım use	u. BH
All dimensions in metres Scale 1:62.5 All dimensions in metres Scale 1:62.5 Client: Coillte Method/ Hydreq Plant Used Design DK EAT	MOC																		
All dimensions in metres Scale 1:62.5 All dimensions in metres Scale 1:62.5 All dimensions in metres Scale 1:62.5 Client: Coillte Method/ Hydreq Bit HQ Design DK EAT	S) CC																		
All dimensions in metres Scale 1:62.5 All dimensions in metres Scale 1:62.5 Client: Coillte Method/ Plant Used Bit HQ Design DK EAT	(SPT)																		
All dimensions in metres Scale 1:62.5 Client: Coillte Method/ Hydreq Design DK EAT	, H																		
Method/ Hydreq Bit HQ Driller Logged By Design DK EAT	SS UK	All dime	nsione i	n C1:	Coillea		<u> </u>	Ma41	 / TT ¹	<u></u>	Ш		D;4 T	10	D.:11	<u></u>	I aa 1	Dr	
	DL AC	me Scale	tres	" Client:	Connte		j	vietnoc Plant U	⊭ Hyd Ised	ıreq			Design	iŲ	1	ег	Logged	EA]	Γ

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

APPENDIX 3

Directors: HERB M. STANLEY, B.Sc., B.A., (Canadian) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., RONAN KILLEEN, B.E., C.Eng., M.I.E.I., (Secretary) Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

Coom Windfarm Bottle Hill, Co. Cork

Geophysical Survey

Report Status: Draft

MGX Project Number: 6529

MGX File Ref: 6529d-005.doc

11th November 2020

Confidential Report To:

Irish Drilling Ltd Old Galway Road Pollroebuck Loughrea Co. Galway **Fehily Timoney & Company**Core House
Pouladuff Road
Cork

Report submitted by: Minerex Geophysics Limited

Unit F4, Maynooth Business Campus Maynooth, Co. Kildare Ireland

Tel.: 01-6510030 Fax.: 01-6510033 Email: info@mgx.ie Issued by:

Author: John Connaughton (Geophysicist)

Reviewer: Hartmut Krahn (Senior Geophysicist)

Subsurface Geophysical Investigations

EXECUTIVE SUMMARY

- 1. Minerex Geophysics Ltd. (MGX) carried out a geophysical survey consisting 2D-Resistivity and seismic refraction (p-wave) profiles at 22 Turbine locations for the Coom Windfarm Project, Bottlehill, Co. Cork.
- 2. The main objectives of the survey were to determine the ground conditions under the site, determine the depth to rock and the overburden thickness, to estimate the strength/stiffness/compaction of overburden and the rock quality.
- After the initial survey was carried out in 2019, six turbine locations (T2 T7) were changed. 5 out of 6 of these new locations were surveyed in November 2020 but the new T4 location was flooded and could not be surveyed at the time.
- 4. The locations in 2020 were cleared by Fehily Timoney & Co. prior to Minerex arrival on site and profiles were carried out where clearance was available. T2 is 30 m from the profile location while T5 is 67 m away from the profiles.
- 5. The survey was spread over an area covering roughly 1500 Ha. It resulted in a wide range of electrical resistivities and seismic refraction velocities characterising the turbine locations.
- 6. The seismic refraction data was divided into 7 distinct layers while the 2D-Resistivitity data provided three generalised overburden and rock types.
- 7. Seismic Layer 1 is interpreted as very soft or very loose topsoil and is no deeper than 1.5 m at its thickest.
- 8. Layer 2 is described as soft or loose topsoil while layers 3 and 4 are described as firm or medium dense and stiff or dense overburden respectively.
- Layer 5 may contain poor weathered rock or very stiff or very dense overburden within it.
- 10. Layer 6 is the deepest layer within the survey constraints at most locations and is interpreted as fair to good rock.
- 11. Layer 7 is the deepest layer, occurring at 2 turbine locations, and is interpreted as good Sandstone.
- 12. The 2D-Resistvity data allowed three general types of overburden to be interpreted which are described as sandy gravelly clay and silt, clayey silty sand and gravel and as the third clean sand and gravel.
- 13. Within the rock layers, the 2D-Resistivity results allowed for three generalised rock types described as mudstone, interbedded mudstone and sandstone, and sandstone within layers 5 and 6 and sandstone within layer 7.
- 14. Layers 1 and 2 which represent very soft or very loose and soft or loose overburden are greater than 3 m thick at T2, T10, T18, T19. The soft or loose layer reaches a depth of up to 4.5m bgl at T5 and T21.
- 15. The shallowest rock at less than 3 m deep occurs at T7, T8 and T9.

- 16. Deepest rock at more than 10 m deep occurs at T5, T15, T20 and T21.
- 17. Along the profiles at Turbines T15 and T23 the geophysics indicate significant lateral change across the length of the profiles.
- 18. This report will be reviewed and finalised after the complete direct ground investigation data has been received.

CONTENTS

1.	INTRODUCTION	1
1.1	Background	1
1.2		
1.3	Site Description	2
1.4	4 Geology	2
1.5	S Report	2
2.	GEOPHYSICAL SURVEY	3
2.1	Methodology	3
2.2	2 D-Resistivity	3
2.3	Seismic Refraction	4
2.4	Site Work	4
3.	RESULTS AND INTERPRETATION	5
3.1	2D-Resistivity	5
3.2	Seismic Refraction	5
3.3	Interpretation of Resistivity and Seismic Refraction	7
4.	CONCLUSIONS	9
4.1	General Conclusions	9
4.2	Conclusions by Turbine	9
5.	REFERENCES	12

List of Tables, Maps and Figures:

Title	Pages	Document Reference
Table 1: Geological Summary for Turbine Locations	5 x A4	6529d_Tab1.xls
Table 2: Summary of Results and Interpretation	In text	In text
Map 1: Overview of Geophysical Survey Location	1 x A3	6529d_MapsFigs.dwg
Map 2a: Geophysical Survey Location Map	1 x A3	6529d MapsFigs.dwg
Map 2b: Geophysical Survey Location Map	1 x A3	6529d_MapsFigs.dwg
Figure 2: Models and Interpretation of Geophysical Survey for T2	1 x A3	6529d_MapsFigs.dwg
Figure 3: Models and Interpretation of Geophysical Survey for T3	1 x A3	6529d_MapsFigs.dwg
Figure 4: Models and Interpretation of Geophysical Survey for T4	1 x A3	6529d_MapsFigs.dwg
Figure 5: Models and Interpretation of Geophysical Survey for T5	1 x A3	6529d_MapsFigs.dwg
Figure 6: Models and Interpretation of Geophysical Survey for T6	1 x A3	6529d_MapsFigs.dwg
Figure 7: Models and Interpretation of Geophysical Survey for T7	1 x A3	6529d_MapsFigs.dwg
Figure 8: Models and Interpretation of Geophysical Survey for T8	1 x A3	6529d_MapsFigs.dwg
Figure 9: Models and Interpretation of Geophysical Survey for T9	1 x A3	6529d_MapsFigs.dwg
Figure 10: Models and Interpretation of Geophysical Survey for T10	1 x A3	6529d_MapsFigs.dwg
Figure 11: Models and Interpretation of Geophysical Survey for T11	1 x A3	6529d_MapsFigs.dwg
Figure 12: Models and Interpretation of Geophysical Survey for T12	1 x A3	6529d_MapsFigs.dwg
Figure 13: Models and Interpretation of Geophysical Survey for T13	1 x A3	6529d_MapsFigs.dwg
Figure 14: Models and Interpretation of Geophysical Survey for T14	1 x A3	6529d_MapsFigs.dwg
Figure 15: Models and Interpretation of Geophysical Survey for T15	1 x A3	6529d_MapsFigs.dwg
Figure 16: Models and Interpretation of Geophysical Survey for T16	1 x A3	6529d_MapsFigs.dwg
Figure 17: Models and Interpretation of Geophysical Survey for T17	1 x A3	6529d_MapsFigs.dwg
Figure 18: Models and Interpretation of Geophysical Survey for T18	1 x A3	6529d_MapsFigs.dwg
Figure 19: Models and Interpretation of Geophysical Survey for T19	1 x A3	6529d_MapsFigs.dwg
Figure 20: Models and Interpretation of Geophysical Survey for T20	1 x A3	6529d_MapsFigs.dwg
Figure 21: Models and Interpretation of Geophysical Survey for T21	1 x A3	6529d_MapsFigs.dwg
Figure 22: Models and Interpretation of Geophysical Survey for T22	1 x A3	6529d_MapsFigs.dwg
Figure 23: Models and Interpretation of Geophysical Survey for T23	1 x A3	6529d_MapsFigs.dwg

1. INTRODUCTION

1.1 Background

Minerex Geophysics Ltd. (MGX) carried out a geophysical survey for the Coom Windfarm Project. The survey consisted of a 2D-Resistivity and seismic refraction (p-wave) profile at each of the turbine locations. The survey was commissioned by Irish Drilling Ltd.

22 locations were initially surveyed in 2019. Six turbine locations (T2 - T7) were subsequently moved and five of these new locations were surveyed in 2020. T4 was flooded at this time and no survey was carried out at the new proposed T4 turbine location. The results from the old turbine location have been replaced in this report.

The survey employed two geophysical methods that complement each other and improve the interpretation. The role of geophysics as a non-destructive fast method is to allow later targeted direct investigations. Those results can be used to improve the initial results and interpretation.

The proposed development consists of 22 Wind Turbines (T2 to T23), 2 substations and three borrow pits across an area covering 1500 ha and stretches a distance of 10 km between the furthest turbines.

The survey was aimed both at investigating the ground stability and to determine the ground conditions under the site.

1.2 Objectives

The main objectives of the geophysical survey were:

- To determine the ground conditions under the site
- To determine the depth to rock and the overburden thickness
- To estimate the strength/stiffness/compaction of overburden materials and the rock quality
- To determine the type of overburden and rock
- To detect lateral changes within the geological layers
- To determine the presence of possible faults and fracture zones

1.3 Site Description

The site is located in Co. Cork between Mallow and Fermoy around Bottlehill and Knocknaskagh. The site stretches for a distance of 10 km and covers an area of roughly 1500 Ha, with 22 turbine locations proposed. Most of the locations are within conifer forestry while some are located in farm land. The turbines are located in upland areas across two separate hills. Most locations required forest clearance for access and to set out the profiles.

1.4 Geology

Table 1 describes the conditions at all the turbine locations including information on the bedrock, overburden, landslide susceptibility and ground water. This table was part of Fehily Timoney's desktop study of the site.

The online geological map of Ireland (GSI, 2019) indicates that the whole survey area is underlain by the Ballytrasna Formation, described as purple mudstone and sandstone while the subsoil varies but is primarily till derived from Devonian sandstones. The rock formation is heavily folded along east – west axes.

1.5 Report

This report includes the results and interpretation of the geophysical survey. Maps, figures and tables are included to illustrate the results of the survey. More detailed descriptions of geophysical methods and measurements can be found in GSEG (2002), Milsom (1989) and Reynolds (1997). For ease of reference, the figure numbers are related to the Turbine numbers which means there is no figure 1.

Elevations were surveyed on site where possible and are used in the vertical sections. In locations where the tree cover was too dense to obtain good elevations with a RTK-GPS system the reference elevation in the drawings is 'zero'.

The interpretative nature and the non-invasive survey methods must be taken into account when considering the results of this survey and Minerex Geophysics Limited, while using appropriate practice to execute, interpret and present the data, give no guarantees in relation to the existing subsurface.

2. GEOPHYSICAL SURVEY

2.1 Methodology

The methodology consisted of carrying out a 2D-Resistivity and Seismic Refraction Profile centred on the proposed turbine location. The orientation of the profiles was primarily based on the most accessible line which could be cleared, avoiding steep embankments and dense vegetation which might affect the results of the survey.

All 21 locations had one 2D-Resistivity and one seismic refraction profile centred at the proposed turbine. Each 2D-Resistivity profile had 32 electrodes with a 3 m spacing to give 93 m length per profile while each seismic refraction profile was carried out using a 2 m spacing and 24 geophones, giving a 46 m long profile. The survey locations are indicated on Map 1 while the orientations are better illustrated on Maps 2a and 2b.

During the revisit in 2020 for the new T2 – T7 location, profiles were carried out where clearance had been undertaken. No clearance had been completed at T4 as it was flooded. The clearance at T2 was 30 m SW of the turbine location and T5 was located 67 m west of where the profiles were undertaken.

All geophysical surveys are acquired, processed and reported in accordance with British Standards BS 5930:1999 +A2:2010 'Code of Practice for Site Investigations'.

2.2 2D-Resistivity

2D-Resistivity profiles were surveyed with electrode spacing of 3 m, 32 electrodes per set-up and a length of 93 m per profile. The readings were taken with a Tigre Resistivity Meter, Imager Cables, stainless steel electrodes, laptop and ImagerPro acquisition software.

During 2D-Resistivity surveying data is acquired in the form of linear profiles using a suite of metal electrodes. A current is injected into the ground via a pair of electrodes while a potential difference is measured across a second pair of electrodes. This allows for the recording of the apparent resistivity in a two-dimensional arrangement below the profile. The data is inverted after the survey to obtain a model of subsurface resistivities. The generated model resistivity values and their spatial distribution can then be related to typical values for different geological materials.

The penetration depth of a resistivity profile increases towards the centre where it reaches an approx. value of 1/6th of the layout length.

2.3 Seismic Refraction

Seismic refraction profiles were surveyed with geophone spacing of 2 m and 24 geophones per set-up resulting in a 46 m length per set-up. The recording equipment consisted of a 24 Channel GEOMETRICS ES-3000 engineering seismograph with 4.5 Hz vertical geophones. The seismic energy source consisted of a hammer and plate. A zero-delay trigger was used to start the recording. 7 shot points per p-wave profile were used.

In the seismic refraction survey method, a p-wave is generated by a source at the surface resulting in energy travelling through surface layers directly and along boundaries between layers of differing seismic wave velocities. Processing of the seismic data allows geological layer thicknesses and boundaries to be established.

Seismic Refraction generally determines the depth to horizontal or near horizontal layers where the compaction/strength/rock quality changes with an accuracy of 10 - 20% of depth to that layer. Where low velocity layers or shadow zones are present (e.g. below solid ground surface) or where layers dip with more than 20 degrees angle the accuracy becomes much less.

The seismic refraction profiles with 46 m individual length and 12 m offshots have a reasonable penetration depth of around 12m. The depth penetration varies according to the velocity structure of the subsurface.

2.4 Site Work

The data acquisition was carried out between the 4th and 19th of June 2019 and the 25th and 26th of September 2019. The site was revisited on the 3rd and 4th of November 2020 as the locations for Turbines T2 – T7 were changed and new surveys were required at the new locations. At the time of the revisit T4 was flooded and could not be surveyed. There are therefore no results provided for T4 in this report. The weather conditions were variable throughout the acquisition period. Health and safety standards were adhered to at all times. The locations and elevations were surveyed with a TRIMBLE RTK-GPS to accuracy < 0.05 m where possible. High trees and dense tree cover in many locations affected the accuracy of the GPS. In these locations, the profile locations are accurate to ~2m and no elevations are provided. The figures are then drawn at a 'zero' elevation (T2, 3, 5, 8, 10, 12, 14, 16, 17, 19, 20, 21, 22, 23).

3. RESULTS AND INTERPRETATION

The interpretation of geophysical data was carried out utilising the known response of geophysical measurements, typical physical parameters for subsurface features that may underlay the site, and the experience of the authors.

The interpretation is made as a layered ground model based on seismic velocities. The 2D-Resistivity results provide information on overburden and rock types as well as horizontal variations within the seismic layers.

3.1 2D-Resistivity

The 2D-Resistivity data was positioned and inverted with the RES2DINV inversion package. The programme uses a smoothness constrained least-squares inversion method to produce a 2D model of the subsurface model resistivities from the recorded apparent resistivity values. Three variations of the least squares method are available and for this project the Jacobian Matrix was recalculated for the first three iterations, then a Quasi-Newton approximation was used for subsequent iterations. Each dataset was inverted using seven iterations resulting in a typical RMS error of <3.0%. The resulting models were colour contoured with the same resistivity scale for all profiles and they are displayed as cross sections (Figures 2 - 23).

Resistivities are characteristic for certain overburden and rock types. If there is a high content of clay minerals (which are electrically conductive) then the overburden resistivity will be lower than as if there is a high content of clastic grains like sand or gravel. The purer the clay and the lower the sand/gravel content the lower the resistivity. The water content in the overburden also influences the resistivities but generally the clay content has a larger effect.

The resistivities cover a range typical for materials from clay rich overburden or peat (low resistivities) to fresh strong unweathered bedrock (high resistivities). The ranges have been taken into the consideration for the interpretation. Within overburden layers, low resistivity values (<250 Ohmm) typically indicates sandy gravelly clay and silt. Medium values (250 to 1000 Ohmm) show a clayey silty sand and gravel, while high resistivities (>1000 Ohmm) indicates a clean sand and gravel overburden. Within bedrock layers, low resistivities indicate mudstone, medium resistivities are interpreted as interbedded mudstone and sandstone while high resistivities indicate sandstone.

3.2 Seismic Refraction

The seismic refraction data was positioned and processed with the SEISIMAGER software package to give a layered model of the subsurface. A total of 7 seismic layers have been determined by analysing the seismic traces and between 3 and 4 layers were used in each individual model. All seismic profiles were subject to a standardised processing sequence which consisted of a topographic correction which was based on

integrated elevation data where available, first break picking, tomographic inversion, travel-time computation via ray-tracing and velocity modelling. Residual deviations of typically 0.4 to 1.8 msec RMS have been obtained for each profile. Following each processing stage QC procedures were adhered to. The resulting layer boundaries are shown as thick lines overlaid on the 2D-Resistivity cross sections (Figures 2 -23). The average seismic velocities obtained within the layers are annotated on the sections as bold black numbers.

The p-wave seismic velocity is closely linked to the density of subsurface materials and to parameters like compaction, stiffness, strength and rock quality. The higher the density of the subsurface materials, the higher the seismic velocity. Similarly, for the other parameters, it is generally valid that a more compacted, stiffer and stronger material will have a higher seismic velocity. For rock, the seismic velocity is higher when the rock is stronger, less weathered and has a higher quality. If the rock is more weathered, broken, fractured, fissured or karstified then the seismic velocity will be reduced compared to that of intact fresh rock.

Because of the above relationship, the seismic refraction method and seismic velocities are suitable to investigate ground where the layers get denser, more compacted and stronger with depth. A disadvantage is that some materials may have the same seismic velocity: Very stiff or very dense highly consolidated overburden and weathered rock can have the same seismic velocity range (as is the case in the layer 5 below).

The modelled seismic data has created the following layered ground model:

Layer 1 is found at locations turbine locations 3, 8, 11 - 13 and 17 - 23. It has seismic velocities of 170 - 200 m/s and is interpreted as very soft of very loose topsoil. This layer may include peat but is not very thick with a maximum thickness of under 1.5 m.

Layer 2 was modelled with a velocity range of 300 - 600 m/s and is the top layer at all other turbine locations (2, 5-7, 9, 10, 14-16) and is found at T12, 18, 19 and 21 below layer 1. The velocity indicates soft or loose topsoil.

Layer 3 velocities of 800 - 1100 m/s indicate overburden with firm or medium dense strength or compaction. This layer is identified at locations T3, 6, 11 - 18, 20 and 22.

Layer 4 has velocities of 1400 - 1500 m/s which indicate a stiff or dense overburden and this is interpreted at T2, 5, 8, 9, 11, 19, 21, 23. This is the deepest layer modelled at T5.

Layer 5 has a velocity range between 1700 – 2000 m/s. This layer is interpreted predominantly as poor weathered rock or very stiff or very dense overburden. This layer is found at T3, 10, 15, 17, 20 and 22.

Layer 6 has a velocity range of 2600 - 3200 m/s and is interpreted as fair to good rock. T6 is the deepest layer in all locations except T2 and T5

Layer 7 is interpreted as good rock with velocities of between 3700 – 4000 m/s. This layer if the found as the deepest layer at T2.

3.3 Interpretation of Resistivity and Seismic Refraction

Table 2 summarises the interpretation. The stiffness or compaction and the rock strength or quality have been estimated from the seismic velocity. The estimation of the excavatability for the bedrock has been made according to the caterpillar chart published in Reynolds (1997). The geotechnical assessment for rippability will have to take factors like rock type and jointing into account and the estimation in this report is solely based on the seismic velocities.

Interpreted cross sections are shown in the right panel of Figures 2 - 23. The interpretation has been made from all available information. For overburden layers and the top of the rock the seismic refraction data has been used as seismic refraction is the best method to delineate layer boundaries (Layers 1 - 7). The resistivity models have been used to delineate three generalised types of overburden and rock (a, b and c). Resistivity data is better suited to show rock types and features within the rock while seismic refraction velocities are indicating the change of compaction, stiffness or rock quality with depth. Along short profile parts where only one data type is available an interpolation for the interpreted layers was made.

Table 2: Summary of Results and Interpretation

	Julimary of ries				
Layer	General Seismic	General	Stiffness/ Compaction	Interpretation	Estimated
	Velocity Range	Resistivity	or		Excavation Method
	(m/sec)	Range (Ohmm)	Rock Strength/ Quality		
			Hock Strength/ Quanty		
1	170 – 200	Any	Very Soft or very loose	Topsoil	Diggable
2	300 – 600	Any	Soft or Loose	Topsoil	Diggable
3a	800 - 1100	<250	Firm	Sandy gravelly Clay and Silt	Diggable
3b	800 - 1100	250 - 1000	Medium Dense	Clayey silty Sand and	Diggable
				Gravel	
3c	800 - 1100	>1000	Medium Dense	Sand and Gravel	Diggable
					30
4a	1400 - 1500	<250	Stiff	Sandy gravelly Clay and Silt	Diggable
4b	1400 - 1500	250 - 1000	Dense	Clayey silty Sand and	Diggable
.~		200 .000	2 51.150	Gravel	2.9940.0
				Graver	
4c	1400 - 1500	>1000	Dense	Sand and Gravel	Diggable
10	1100 1000	71000	20100	Carla and Gravor	Diggaolo
5a	1700 - 2000	<250	Poor	Weathered Mudstone or	Diggable or rippable
			or Very stiff	sandy gravelly Clay and Silt	to marginal rippable
			Or very sun		
5b	1700 - 2000	250 - 1000	Poor	Weathered Interbedded	Diggable or rippable
			or Very dense	Mudstone and Sandstone or	to marginal rippable
			or very derise	clayey silty Sand and Gravel	
0-	0000 0000	050	Faints Cood	Mudatana	Dunaldina 9 Dinastin
6a	2600 - 3200	<250	Fair to Good	Mudstone	Breaking & Blasting
6b	2600 - 3200	250 - 1000	Fair to Good	Interbedded Mudstone and	Breaking & Blasting
				Sandstone	
6c	2600 - 3200	>1000	Fair to Good	Sandstone	Breaking & Blasting
7	3700 - 4000	>1000	Good	Sandstone	Breaking & Blasting

4. CONCLUSIONS

4.1 General Conclusions

- Minerex Geophysics carried out a survey consisting of a 2D-Resistivity and seismic refraction profile at 22 proposed turbine location for the Coom Windfarm project.
- Six Turbine locations (T2 T7) were subsequently changed and 5 of these (T2, T3, T5 T7) were resurveyed in 2020.
- The survey was carried out over a large area which is indicated by the wide range of resistivities and seismic refraction velocities found throughout the survey.
- There are 7 seismic layers modelled where the strength, stiffness, compaction and rock quality increases with depth. These have been subdivided by resistivities into overburden and rock type.
- Layer 2 is interpreted as soft or loose topsoil while layers 3 and 4 are described as firm or medium dense and stiff or dense overburden.
- Layer 5 is described as poor weathered rock or very stiff or very dense overburden.
- Layer 6 is interpreted as fair to good rock while layer 7 which is only found at T2 has higher velocities and is interpreted as good rock.
- The overburden layers were subdivided into three general types using the 2D-Reistivity results described as sandy gravelly clay and silt, clayey silty sand and gravel and clean sand and gravel.
- Layers 5 is both divided into two generalised rock types described as mudstone and interbedded mudstone and sandstone.
- Layer 6 is divided into three generalised rock types described as mudstone and interbedded mudstone and sandstone and sandstone.
- Where seismic layer 7 is present the resistivities are also higher than in layers 5 and 6 which give an interpretation of the bedrock as sandstone.

4.2 Conclusions by Turbine

Turbine 2 has the highest resistivity and seismic velocities of all the turbine locations. The resistivities remain high from the surface to depth and are interpreted as sand and gravel overburden over good sandstone. There is a think soft and loose topsoil layer with good sandstone layer between 4.5 and 7 m below ground level (bgl). The overburden could be derived by complete weathering of the rock.

Turbine 3 has a shallow topsoil layer underlain by 1.5 - 3 m of medium dense clayey silty sand and gravel. The poor weathered interbedded mudstone and sandstone or very dense clayey silty sand and gravel layer is between 2 - 3.5 m thick.. Fair to good interbedded mudstone and sandstone is between 2.5 and 4 m bgl.

Turbine 4 was not surveyed as the location was flooded when surveying was taking place.

Turbine 5 has a layer of soft or loose topsoil that is between 3.5 – 4.5 m thick. This layer us underlain by thick overburden primarily described as dense sand and gravel with some dense clayey silty sand and gravel near the top of the layer. It is likely that rock is found at a depth of 10 m as the resistivities increase around this depth.

Turbine 6 has uniform high resistivity with depth along the profile. The seismic refraction data shows soft or loose overburden over medium dense sand and gravel to a depth of 3.5 – 4.5 m underlain by fair to good sandstone.

Turbine 7 shows high seismic velocities close to the surface with primarily medium resistivities at all depths. The location is underlain by 1 - 2 m of soft or loose topsoil with fair to good interbedded mudstone and sandstone below this.

Turbine 8 has predominantly dense clayey silty sand and gravel overburden under a shallow layer of very soft or very loose topsoil. The bedrock is described as fair to good interbedded mudstone and sandstone at a depth of between 2.75 m in the SE to 6 m below the Turbine and towards the NW.

Turbine 9 has a more clay and silt rich overburden while the bedrock is shallow at a depth of between 2 m in the SE and 4 m in the NW. It is interpreted as fair to good mudstone.

Turbine 10 has a relatively deep layer of soft or loose topsoil up to 3.5 m thick, underlain predominantly by poor weathered mudstone or very stiff sandy gravelly clay and silt. The top of the fair to good mudstone layer is between than 5.5 and 9 m bgl.

At **Turbine 11**, the overburden is described as a thin layer of very soft or very loose topsoil over medium dense to dense predominantly clayey silty sand and gravel to a depth of 5 - 6.5 m bgl underlain by fair to good mudstone.

Along **Turbine 12**, the resistivities decrease with depth which indicates a sandier gravelly overburden at the surface with greater clay content below it. The low resistivities at depth indicate a mudstone which is at depths of 3.5 and 5.5 bgl.

Turbine 13 shows a sudden decrease in resistivities between the overburden and rock layers. This is interpreted as a very loose to medium dense sand and gravel overburden to a depth of 4 - 5 m bgl over mudstone in the east and interbedded mudstone and sandstone towards the west.

Turbine 14 similarly shows a rapid decrease in resistivities with depth which is also interpreted as loose to medium dense sand and gravel overburden over fair to poor mudstone at a depth of 4 - 5 m bgl.

At **Turbine 15** the resistivities generally decrease with depth as well as decreasing towards the SW. This indicates greater clay content in the overburden and mudstone towards the SW. Soft or loose topsoil is up to 2.5 m thick. This is underlain by a slightly thinner layer of medium dense sand and gravel. Poor weathered interbedded mudstone and sandstone or very dense clayey silty sand and gravel begins at 4 m

bgl while the fair to good rock layer begins between 6 and 10 m bgl, becoming deeper towards the NE. This location shows a lateral change in overburden and bedrock type and also in the depth to rock. This could indicate a fault or fracture zone under the proposed turbine.

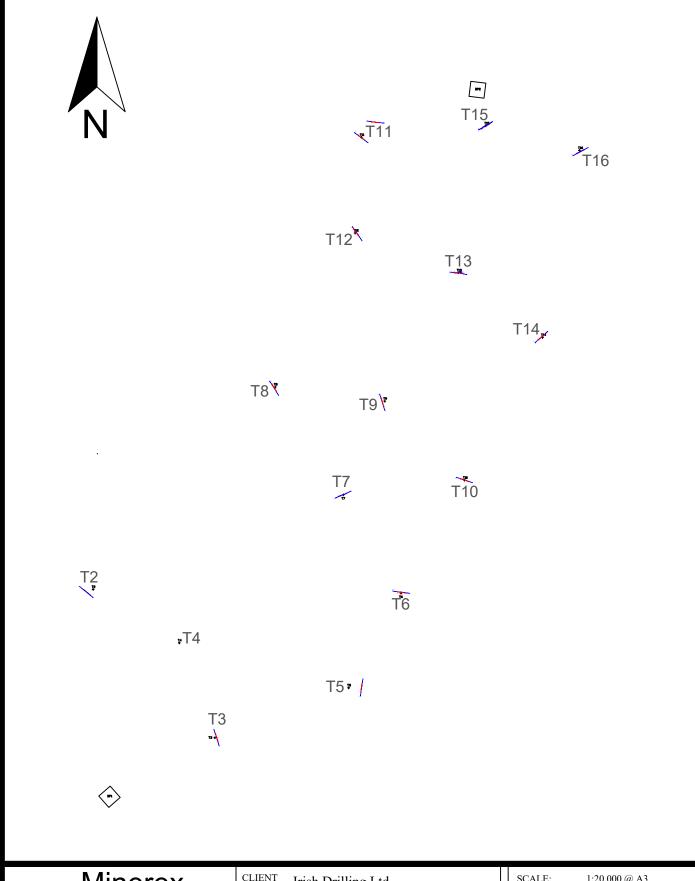
Turbine 16 has a thin layer of soft or loose topsoil over medium dense clayey silty sand and gravel. Low resistivities and high seismic refraction at depth indicates fair to good mudstone at a depth of 4.5 m bgl

Turbine 17 has a relatively uniform resistivity throughout the survey area. The seismic refraction velocities increase rapidly with depth which gives a four-layer model ranging from very soft or very loose topsoil to fair to good interbedded mudstone and sandstone at a depth of 4 - 4.5 m bgl.

Turbine 18 shows a slight decrease in resistivities with depth and towards the west. The overburden consists of thin layers of very soft to soft or very loose to loose topsoil over a thicker layer of medium dense clayey silty sand and gravel. The bedrock is interpreted as fair to good interbedded mudstone and sandstone at a depth of between 8.5 and 9 m bgl. The rock is relatively deep at this location.

Turbine 19 has a decrease in resistivities with depth in the overburden and an increase within the rock layer. This indicates an increase in clay content in the overburden and an increase in sandstone layering within the bedrock with depth. The overburden is interpreted as 1.5 to 3 m of very soft to soft or very loose to loose topsoil over stiff or dense overburden. The fair to good rock layer begins at a depth of 5 - 6.5 m bgl.

Turbine 20 shows a higher resistivities near the surface before decreasing and becoming more homogenous with depth. There is a thick layer between 3-5 and 8-11 m bgl which is interpreted as poor weathered interbedded mudstone and sandstone or very dense clayey silty sand and gravel with fair to good rock below it. The fair to good rock is relatively deep at this location.


The geophysical results at **Turbine 21** are interpreted as a 2-4.5 m of very loose to loose topsoil over a layer of dense sand and gravel with increased clay and silt content with depth. The fair to good rock drops off sharply below the turbine location from 7 m bgl in the SE to over 15 m in towards the NW. This location shows a lateral change in overburden and bedrock type and also in the depth to rock. This could indicate a fault or fracture zone under the proposed turbine.

Turbine 22 has a four-layer seismic refraction model which is interpreted as thin layers of very soft or very loose overburden and medium dense clayey silty sand and gravel over a layer interpreted primarily as poor weathered interbedded mudstone and sandstone or very dense clayey silty sand and gravel starting at a depth of 1.5 - 3.5 m bgl. Fair to good rock begins at a depth of 4.5 - 5 m.

Turbine 23 has a thin layer of very soft or very loose topsoil over a thick layer of dense clayey silty sand and gravel. Fair to good interbedded mudstone and sandstone is interpreted as a depth of 5 m in the SE dropping to 8.5 m in the NW.

5. REFERENCES

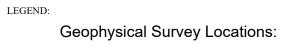
- 1. **GSEG 2002.** Geophysics in Engineering Investigations. Geological Society Engineering Geology Special Publication 19, London, 2002.
- 2. **GSI, 2019.** Online Bedrock Geological Map of Ireland. Geological Survey of Ireland 2019.
- 3. Milsom, 1989. Field Geophysics. John Wiley and Sons.
- 4. Reynolds, 1997. An Introduction to Applied and Environmental Geophysics. John Wiley and Son.

T21		T22	*T23
	T20		

T19

T18

T17,

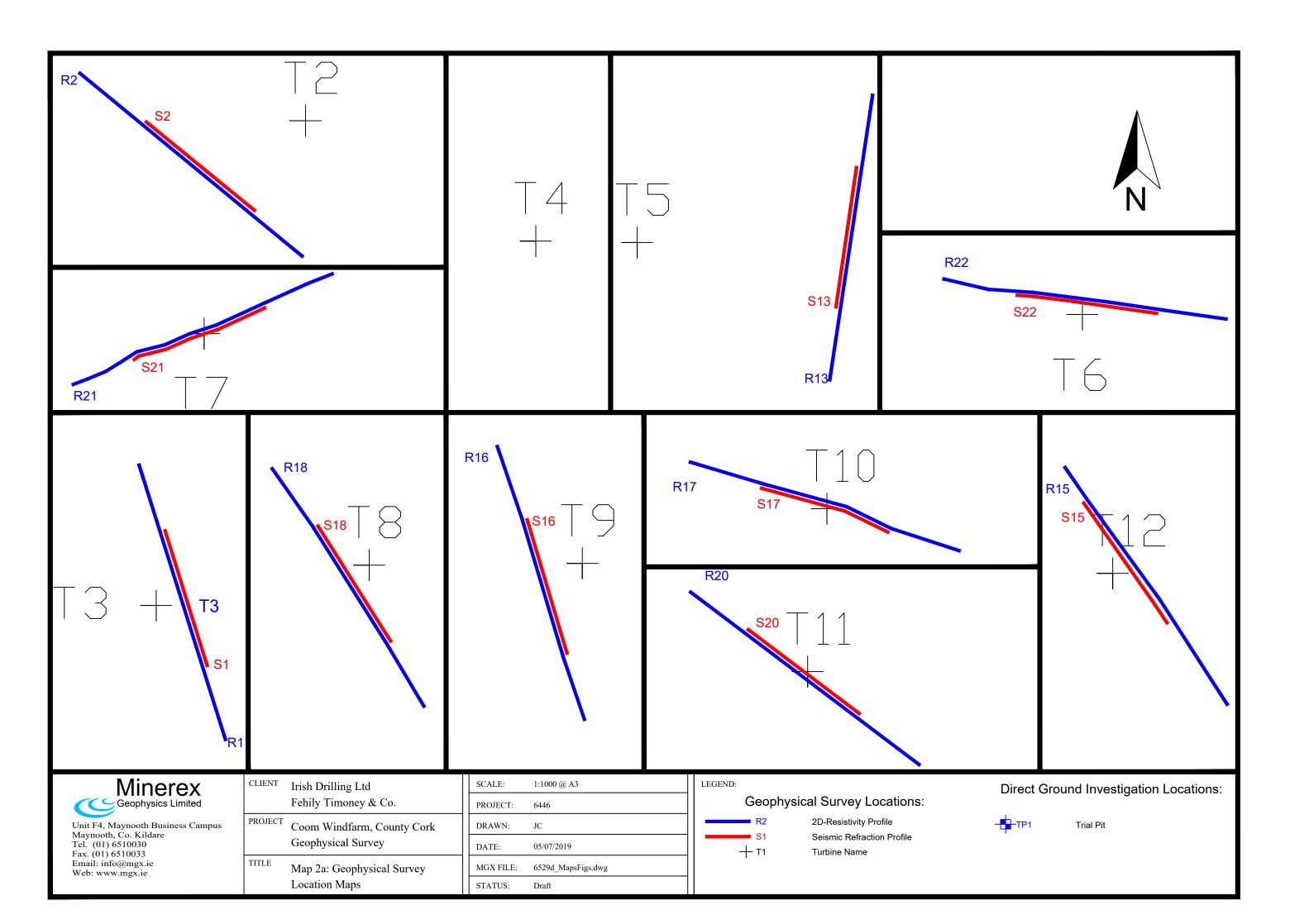

Minerex	
Geophysics Limited	
Unit F4. Maynooth Business Cam	11

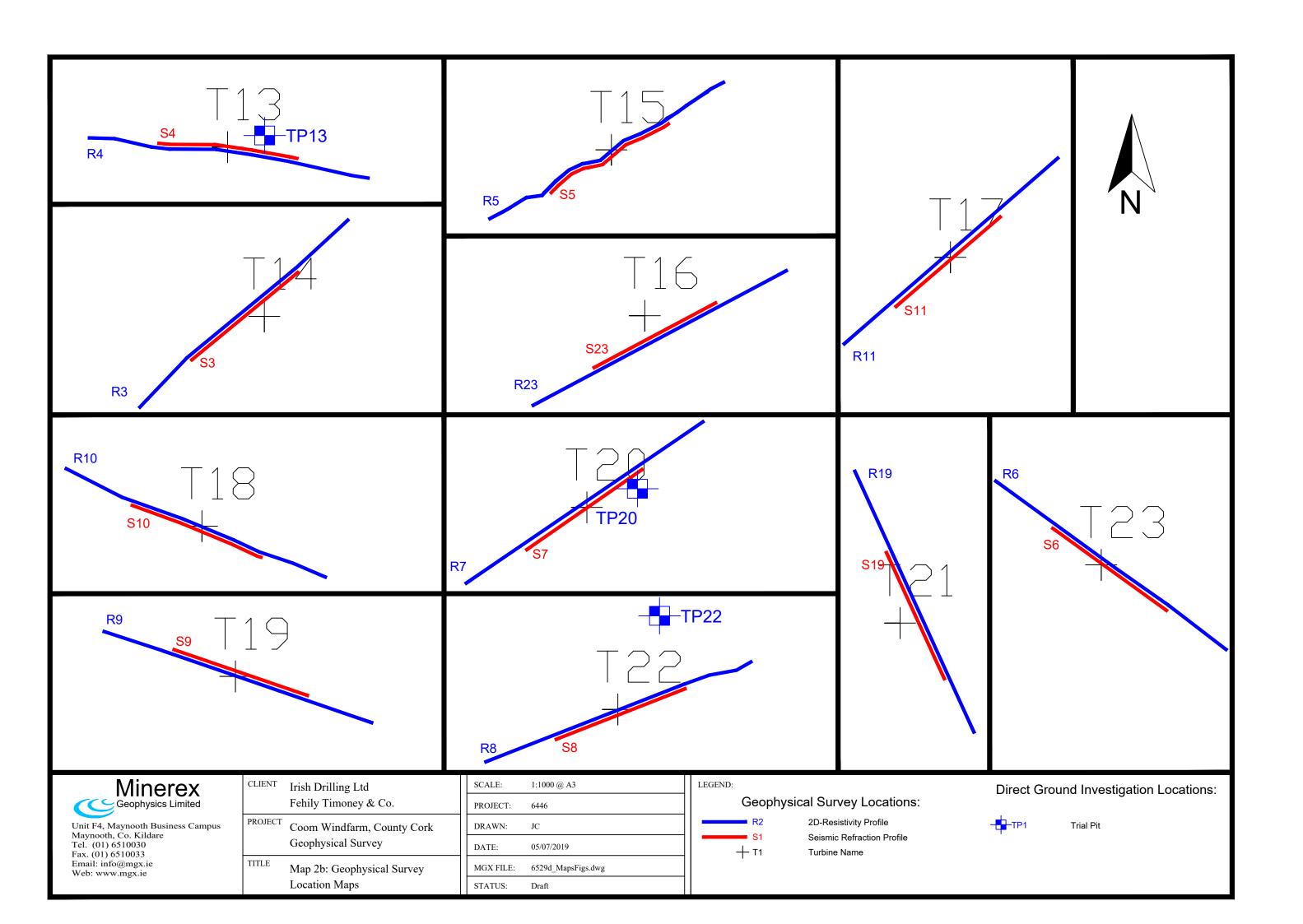
Unit F4, Maynooth Busin Maynooth, Co. Kildare Tel. (01) 6510030 Fax. (01) 6510033 Email: info@mgx.ie Web: www.mgx.ie

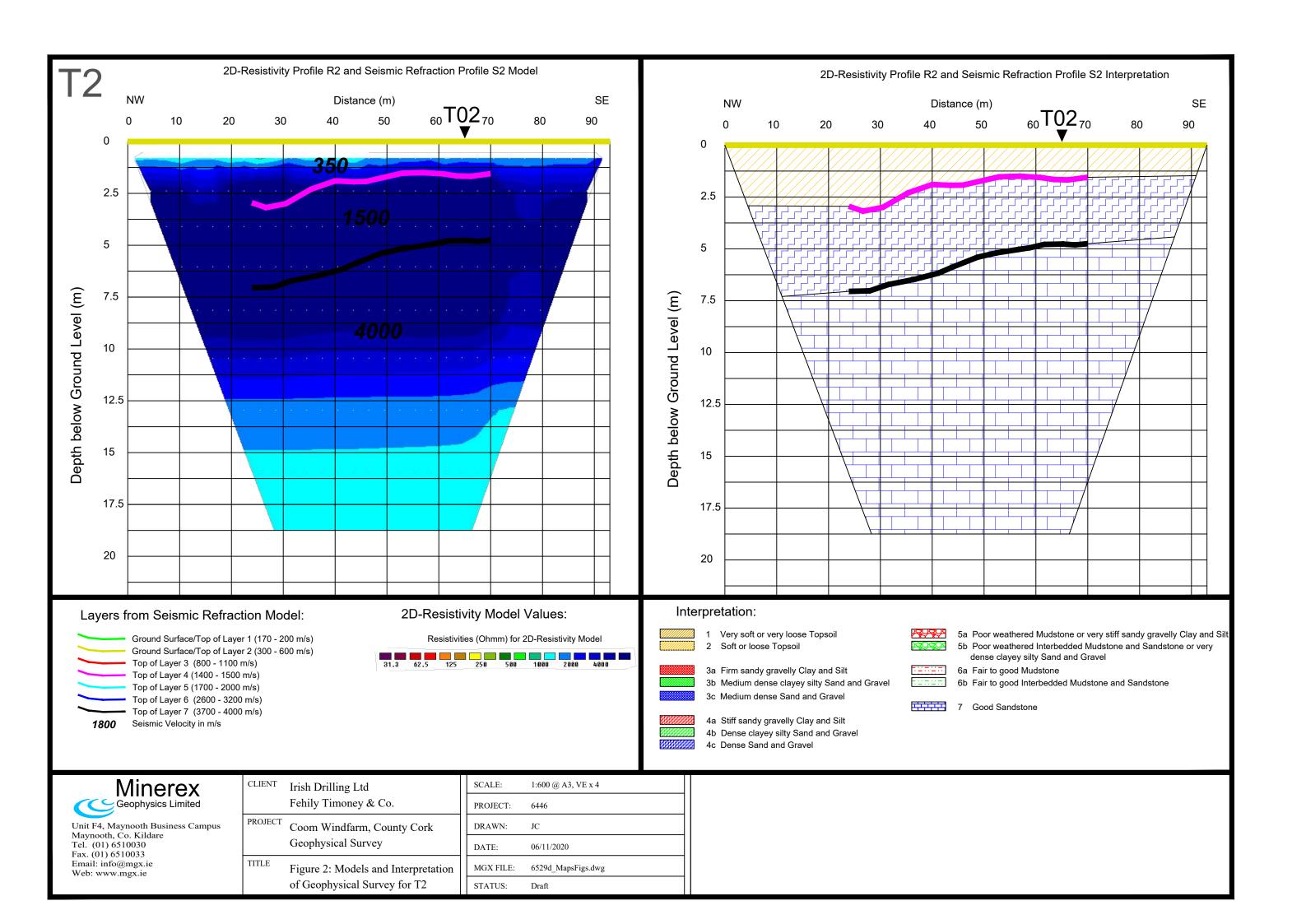
CLIENT	Irish Drilling Ltd Fehily Timoney & Co.
PROJECT	Coom Windfarm, County Cork Geophysical Survey
TITLE	Map 1: Overview Map of Geophysical Survey Locations

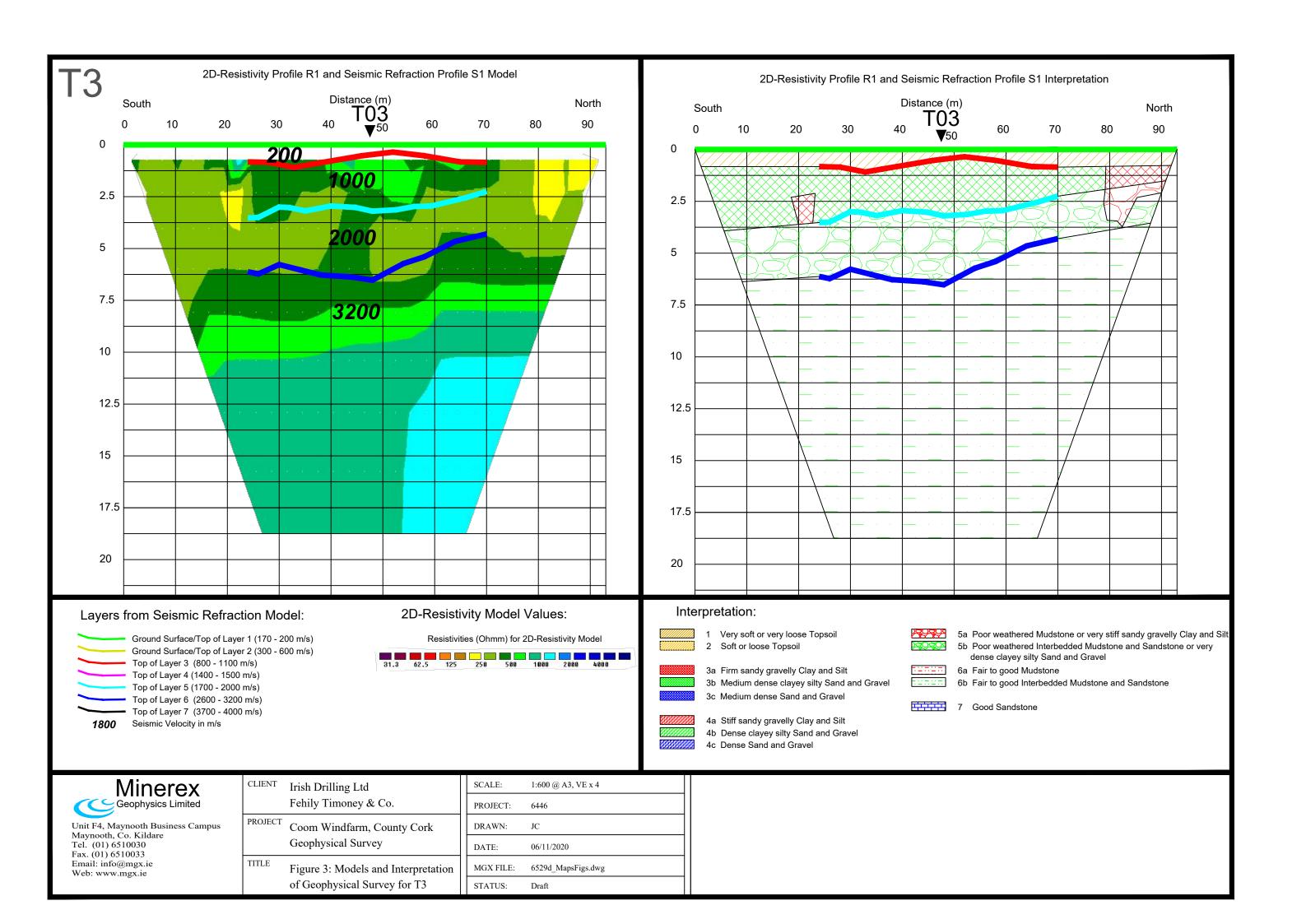
	SCALE:	1:20,000 @ A3	
	PROJECT:	6446	
	DRAWN:	JC	
	DATE:	05/07/2019	
	MGX FILE:	6529d_MapsFigs.dwg	
	STATUS:	Draft	1

	SCALE:	1:20,000 @ A3
	PROJECT:	6446
	DRAWN:	JC
	DATE:	05/07/2019
	MGX FILE:	6529d_MapsFigs.dwg
	CTATHC.	Draft

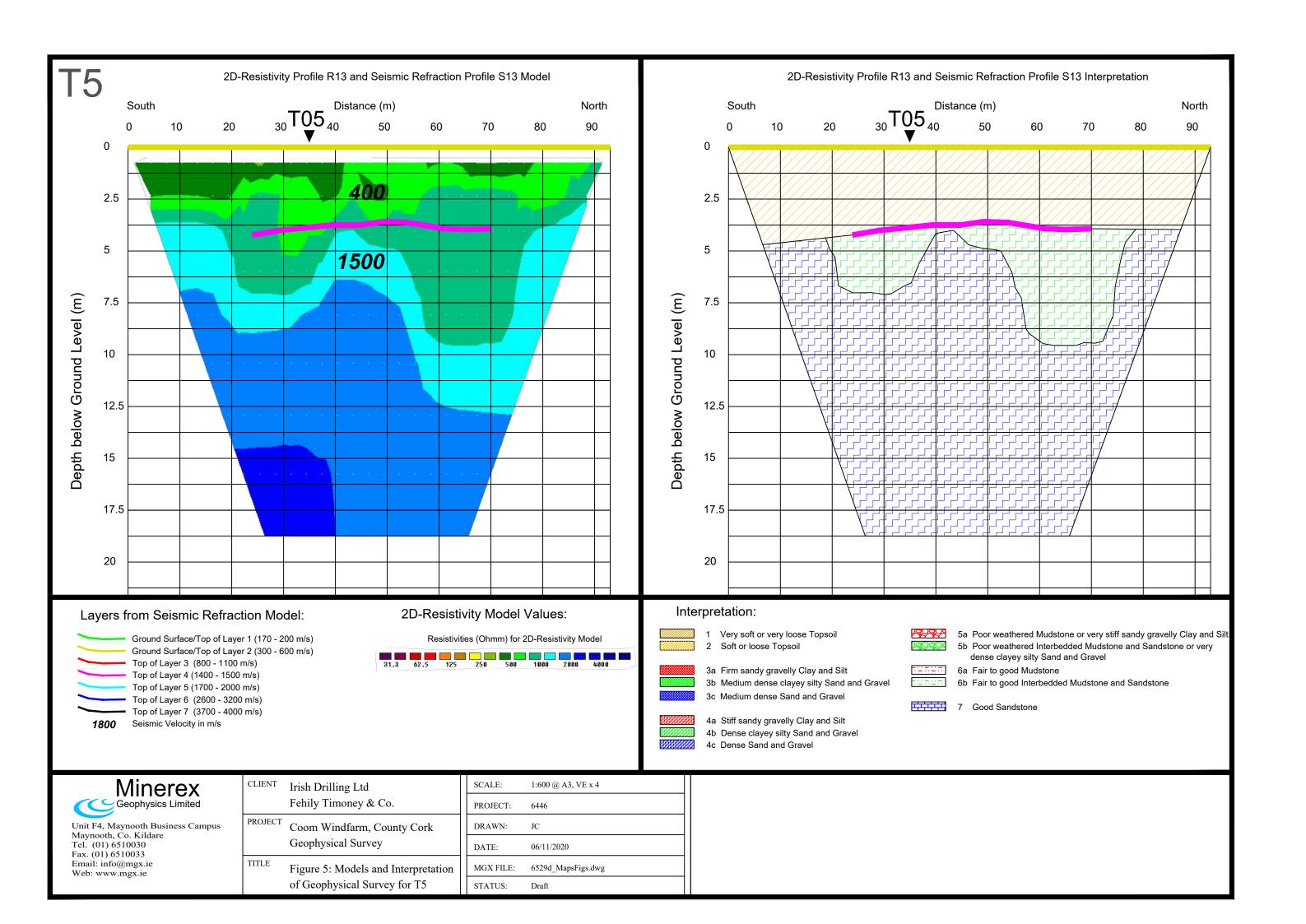


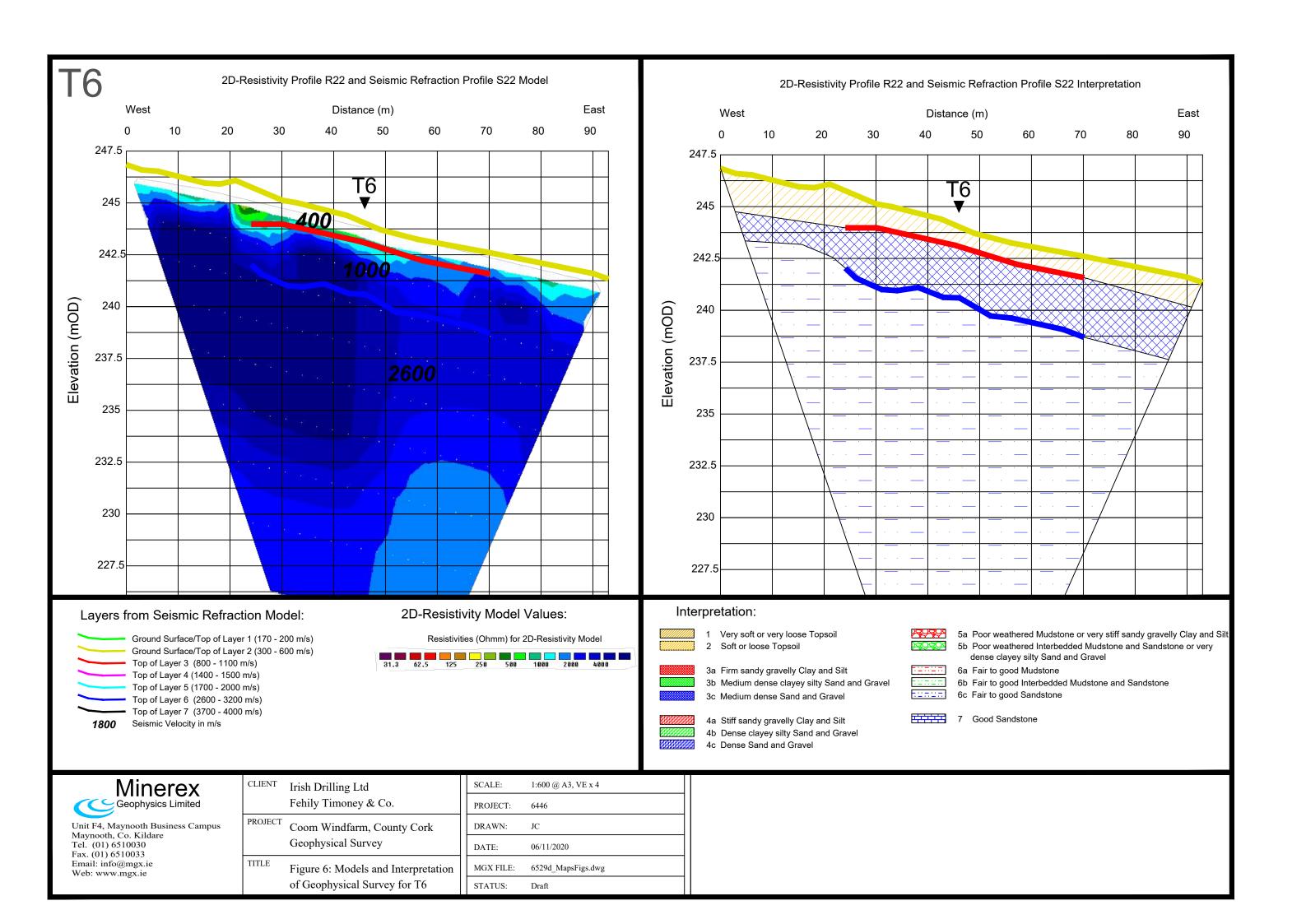

2D-Resistivity Profile Seismic Refraction Profile Turbine Name

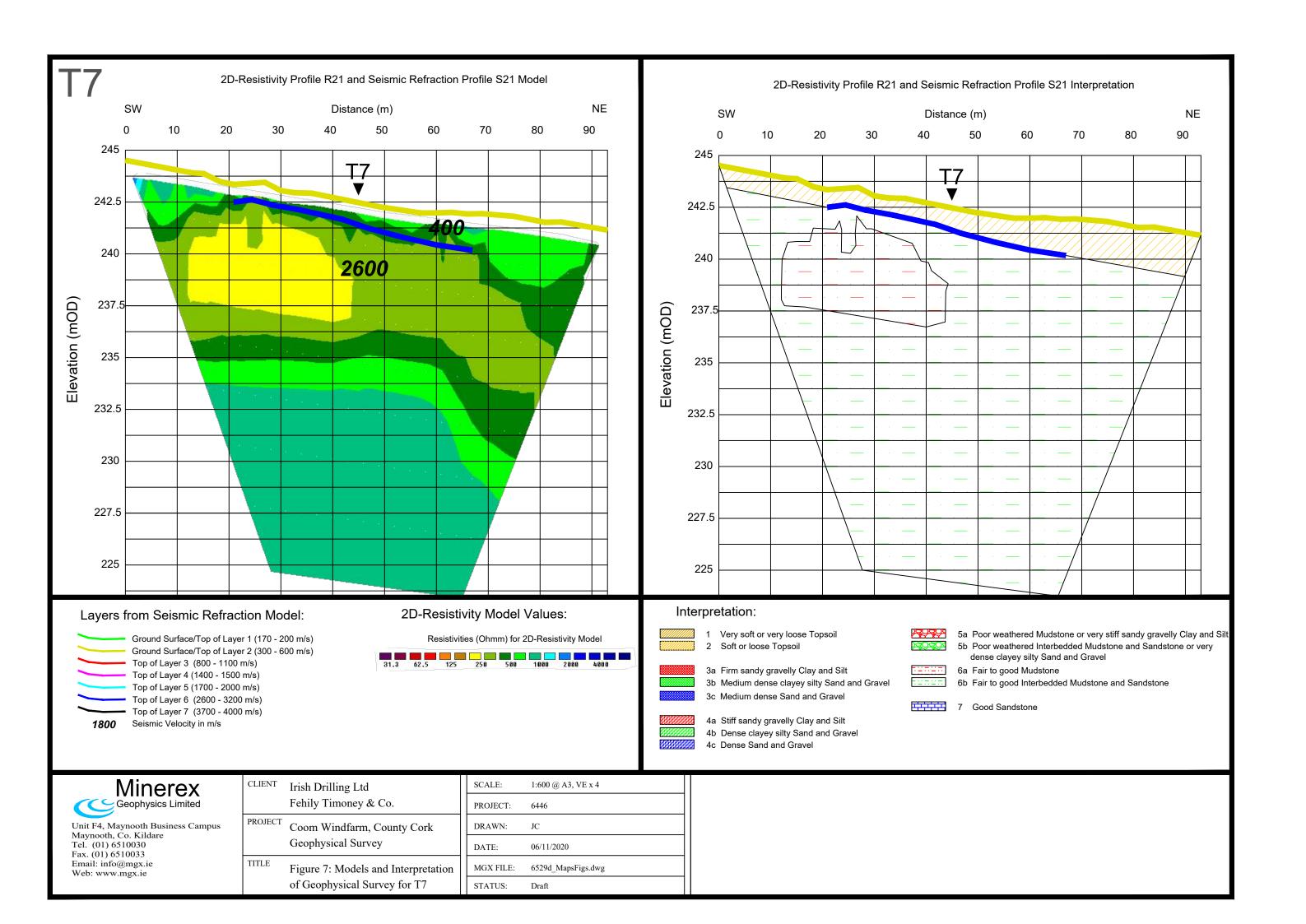

Direct Ground Investigation Locations:

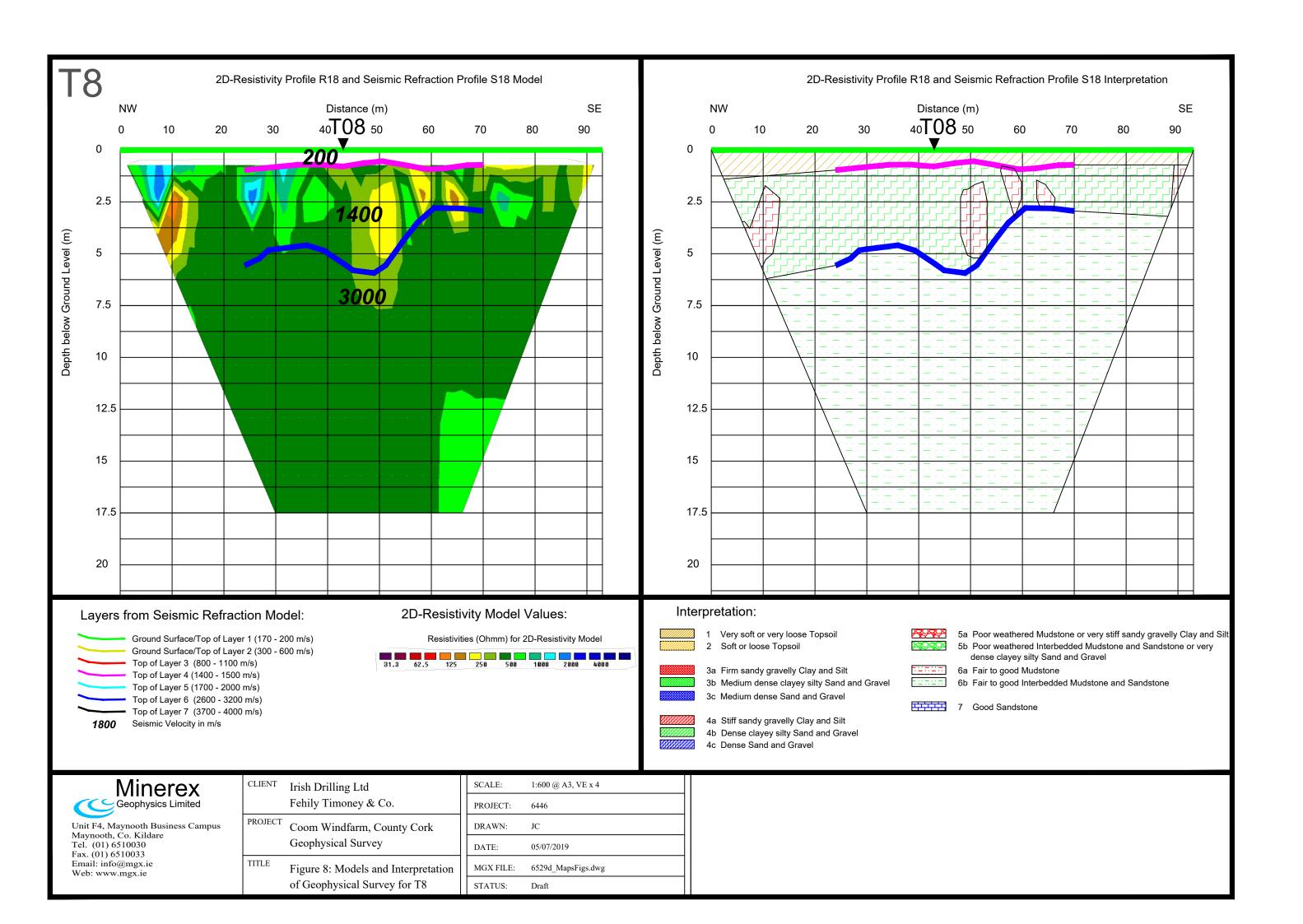


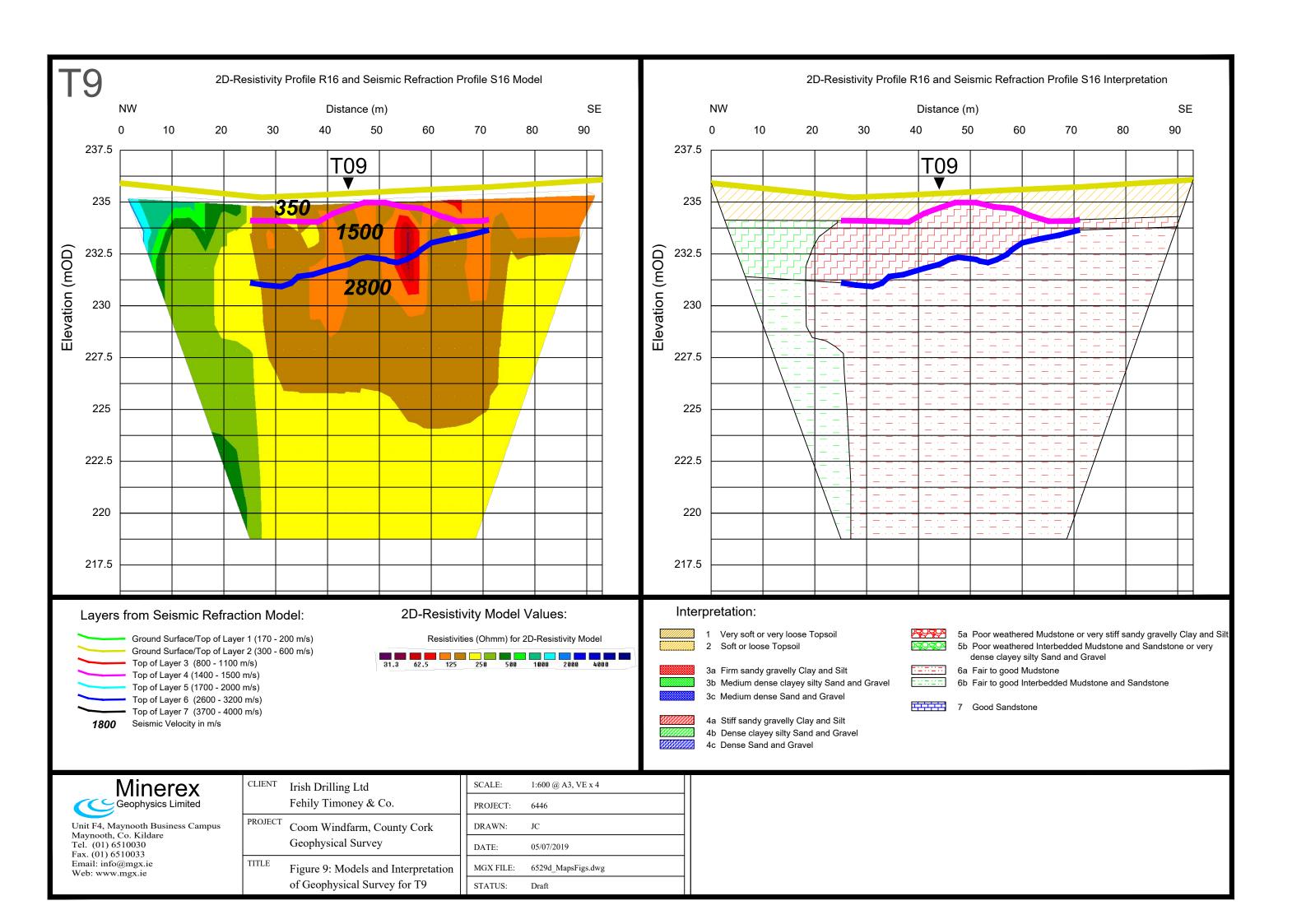
Trial Pit

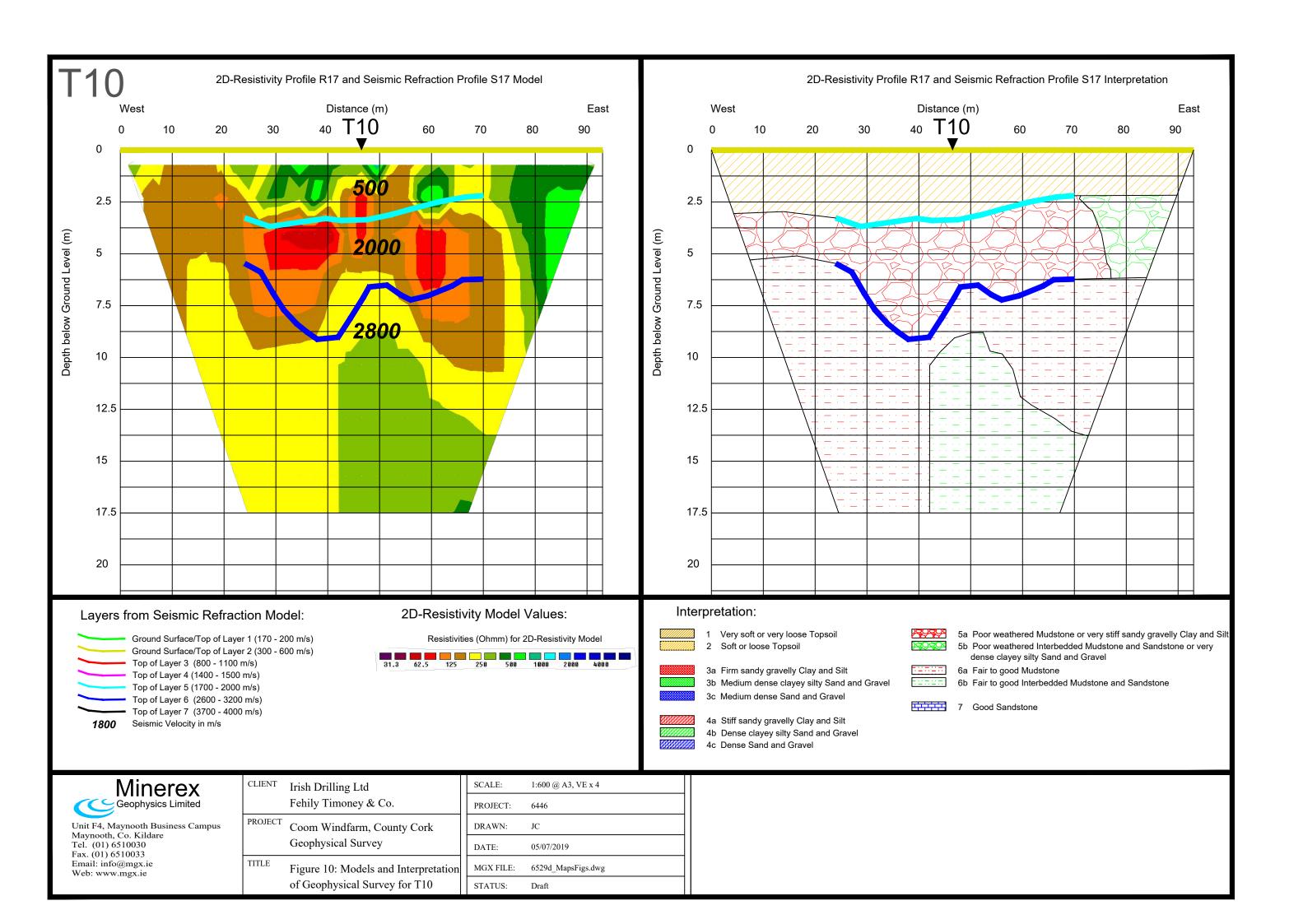


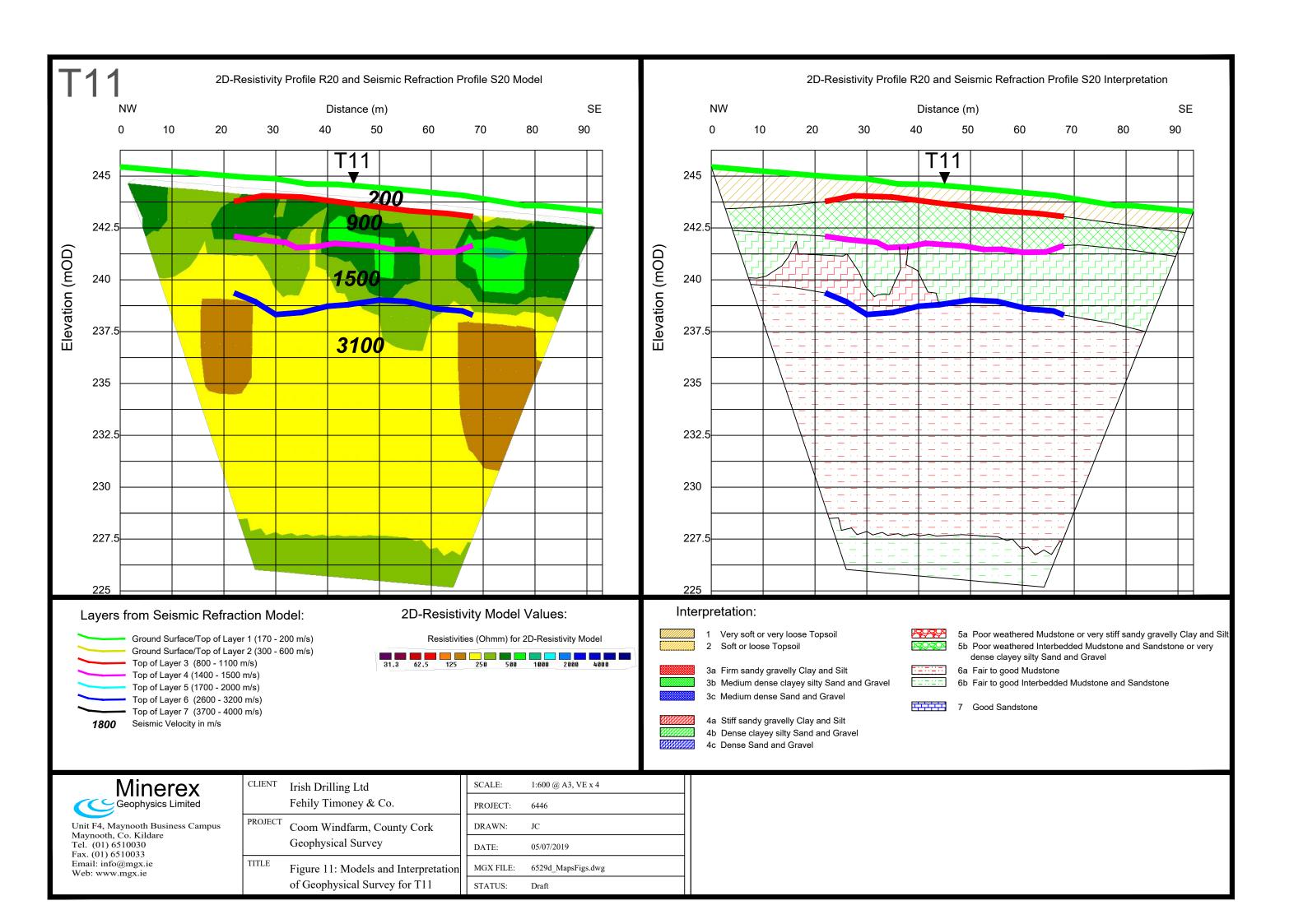


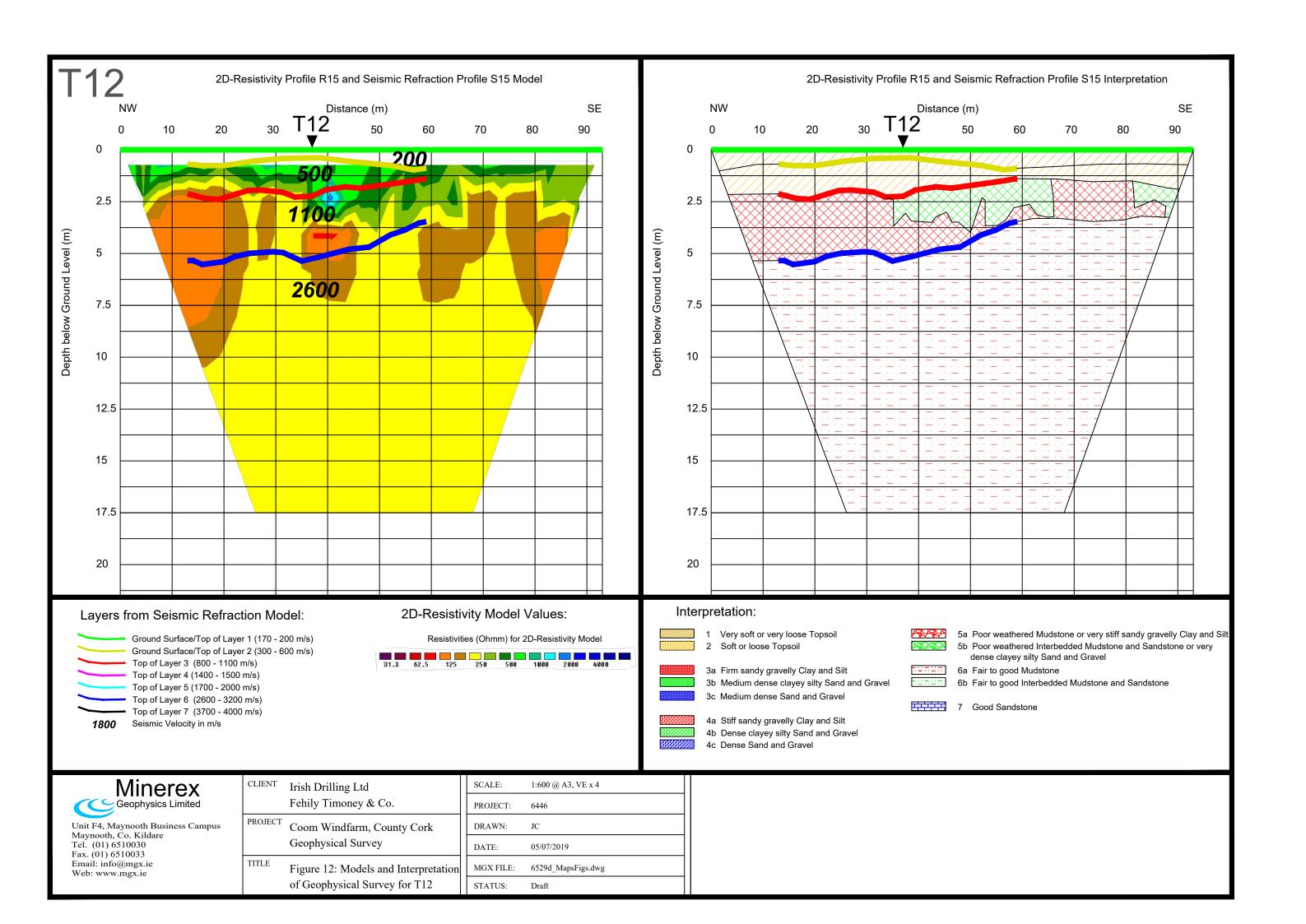


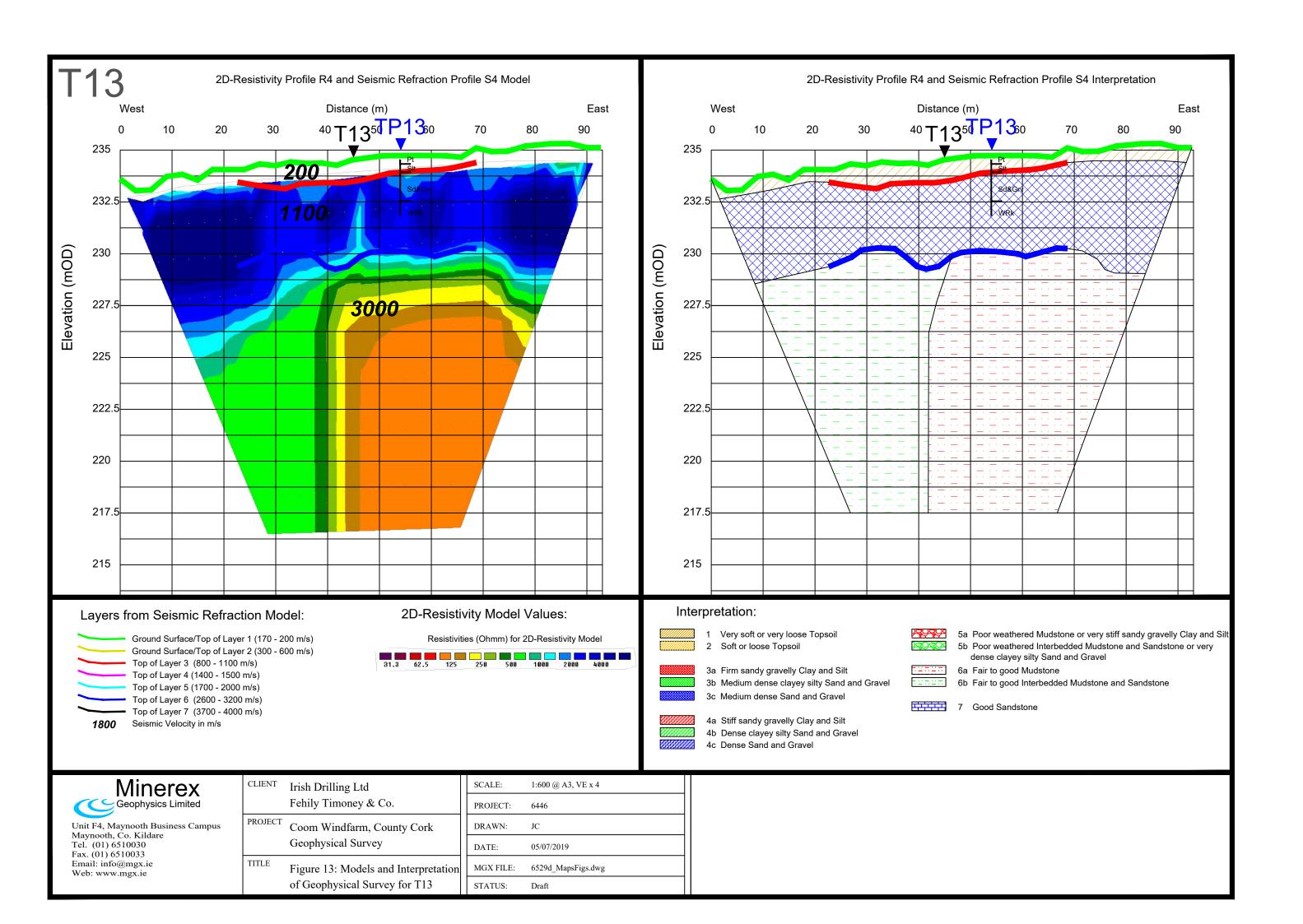


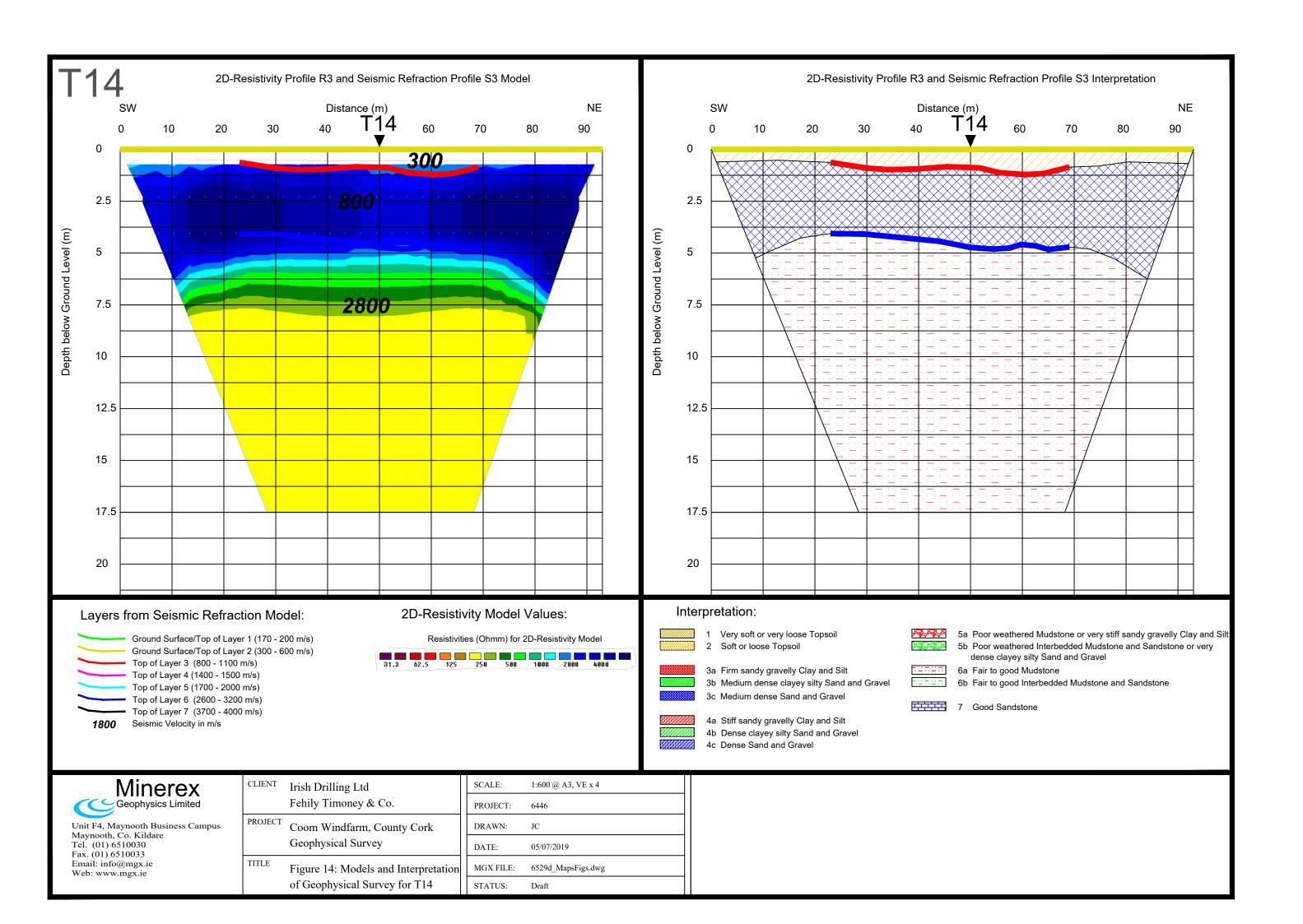

Site flooded during revisit 2020 Interpretation: 2D-Resistivity Model Values: Layers from Seismic Refraction Model: 1 Very soft or very loose Topsoil 5a Poor weathered Mudstone or very stiff sandy gravelly Clay and Silt Ground Surface/Top of Layer 1 (170 - 200 m/s) Resistivities (Ohmm) for 2D-Resistivity Model 2 Soft or loose Topsoil 5b Poor weathered Interbedded Mudstone and Sandstone or very Ground Surface/Top of Layer 2 (300 - 600 m/s) 31.3 62.5 125 258 588 1888 2888 4888 dense clayey silty Sand and Gravel Top of Layer 3 (800 - 1100 m/s) 3a Firm sandy gravelly Clay and Silt 6a Fair to good Mudstone Top of Layer 4 (1400 - 1500 m/s) 3b Medium dense clayey silty Sand and Gravel 6b Fair to good Interbedded Mudstone and Sandstone Top of Layer 5 (1700 - 2000 m/s) 3c Medium dense Sand and Gravel Top of Layer 6 (2600 - 3200 m/s) 7 Good Sandstone Top of Layer 7 (3700 - 4000 m/s) 4a Stiff sandy gravelly Clay and Silt **1800** Seismic Velocity in m/s 4b Dense clayey silty Sand and Gravel 4c Dense Sand and Gravel CLIENT Minerex SCALE: 1:600 @ A3, VE x 4 Irish Drilling Ltd Geophysics Limited Fehily Timoney & Co. PROJECT: 6446 PROJECT Unit F4, Maynooth Business Campus Coom Windfarm, County Cork DRAWN: JC Maynooth, Co. Kildare Geophysical Survey Tel. (01) 6510030 05/07/2019 DATE: Fax. (01) 6510033 Email: info@mgx.ie TITLE Figure 4: Models and Interpretation MGX FILE: 6446d_MapsFigs.dwg Web: www.mgx.ie of Geophysical Survey for T4 STATUS: Draft

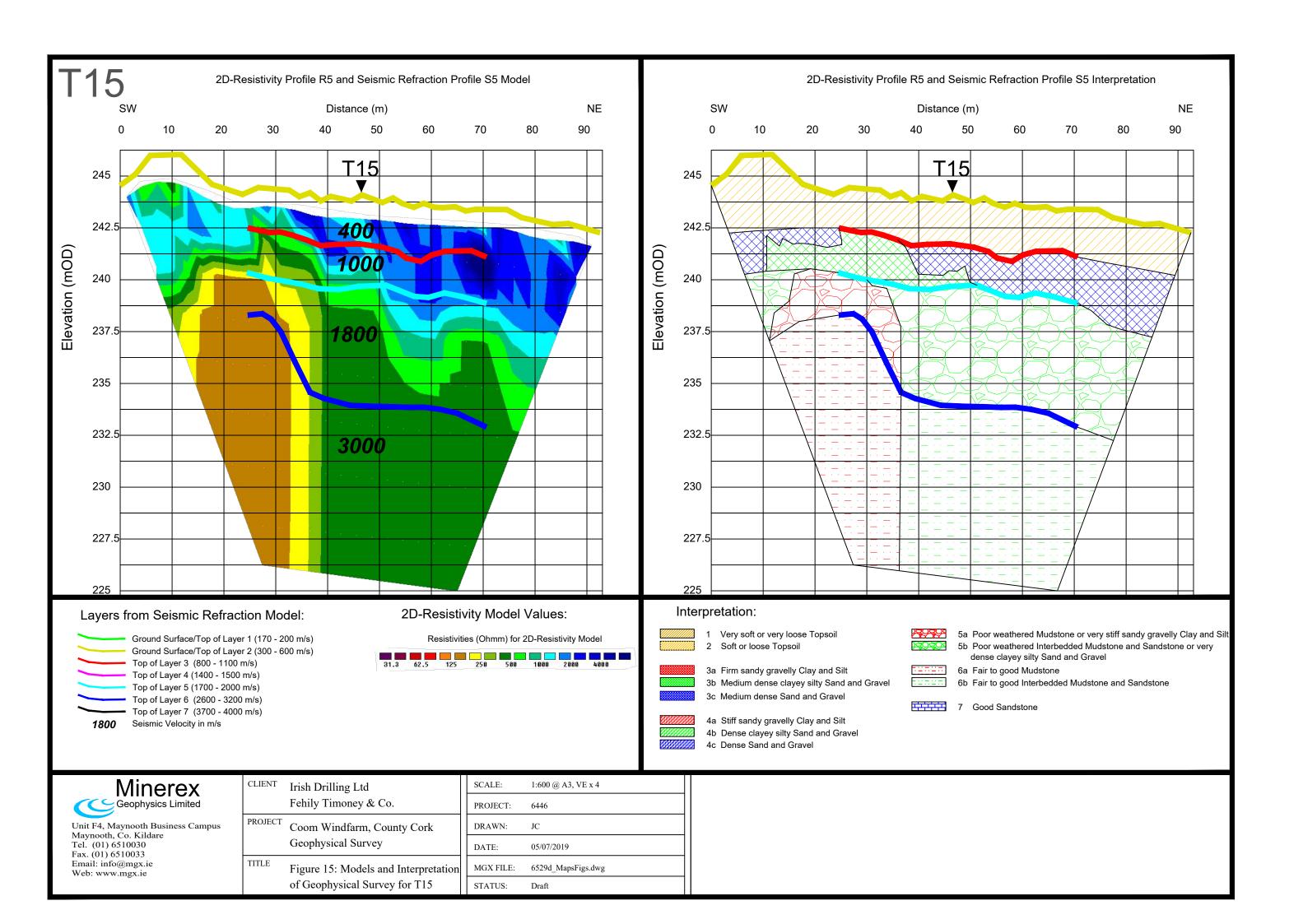


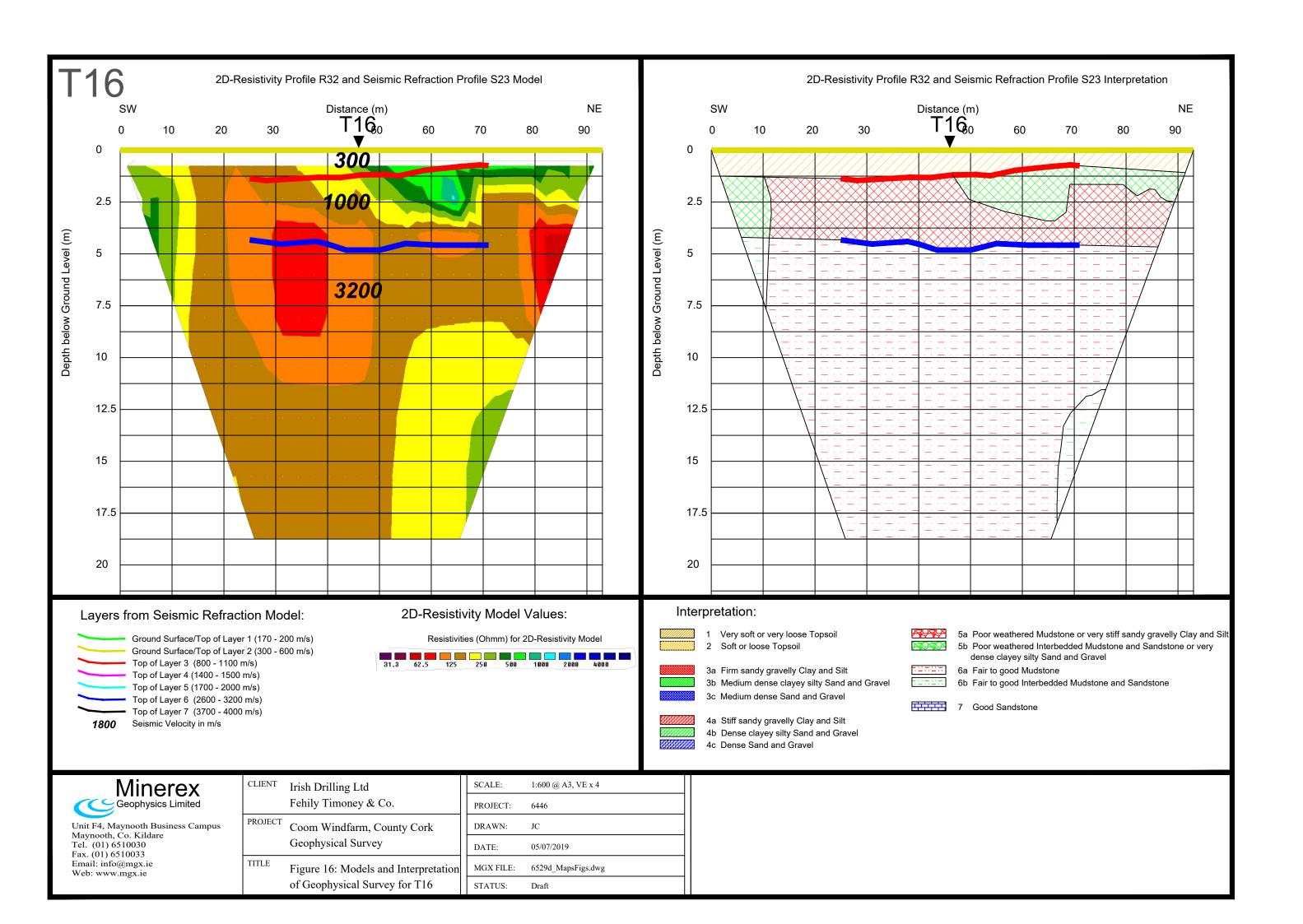


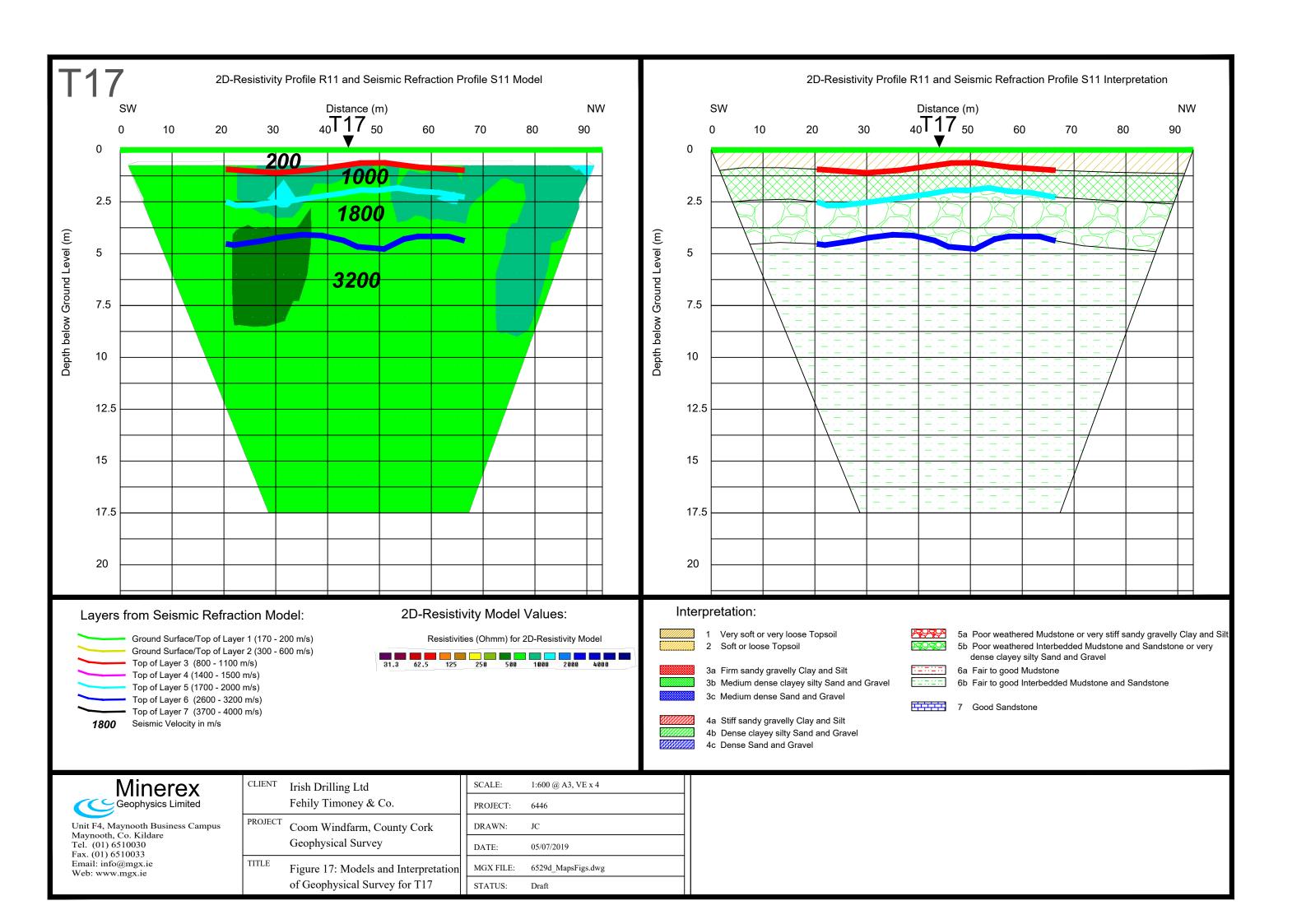


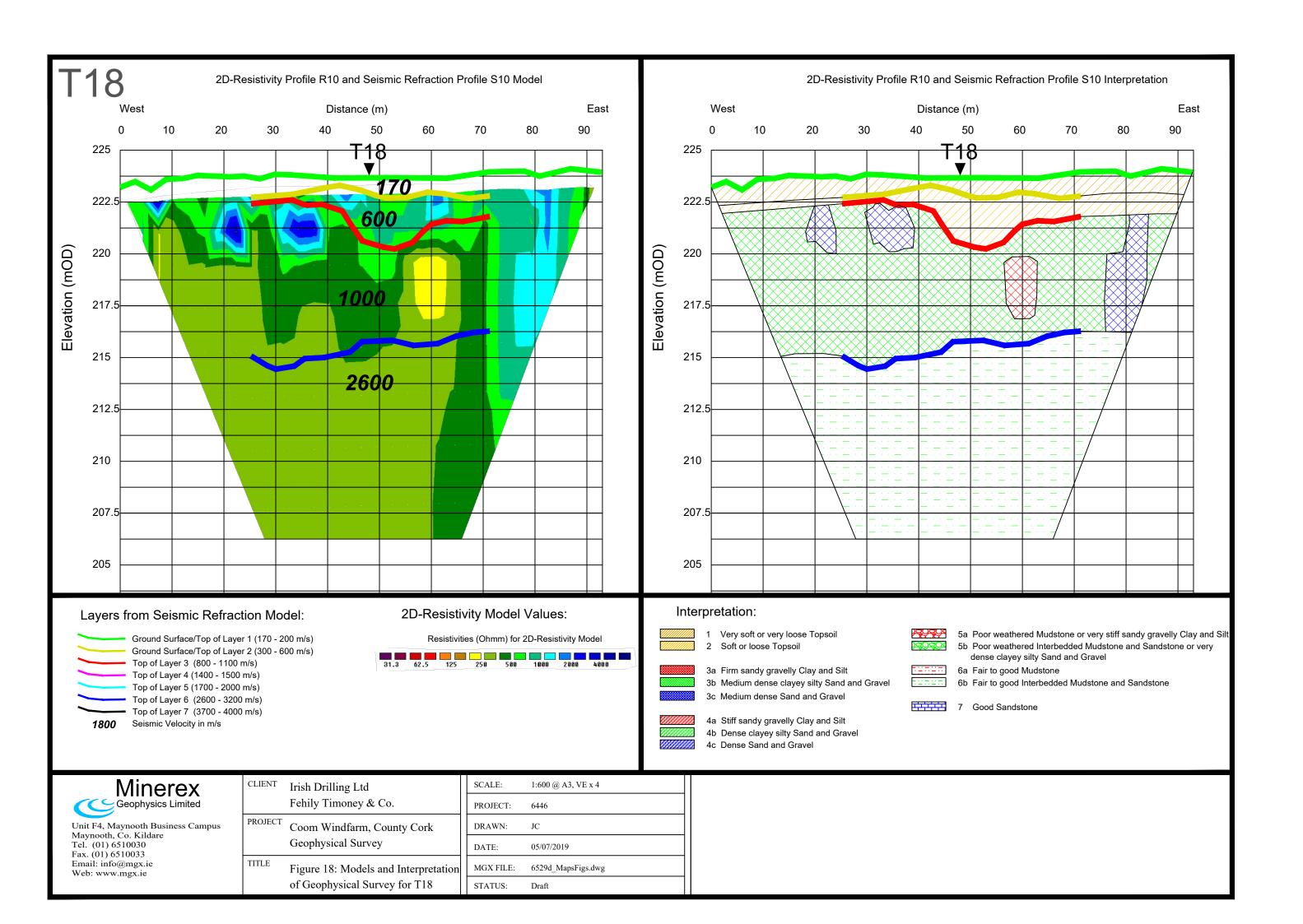


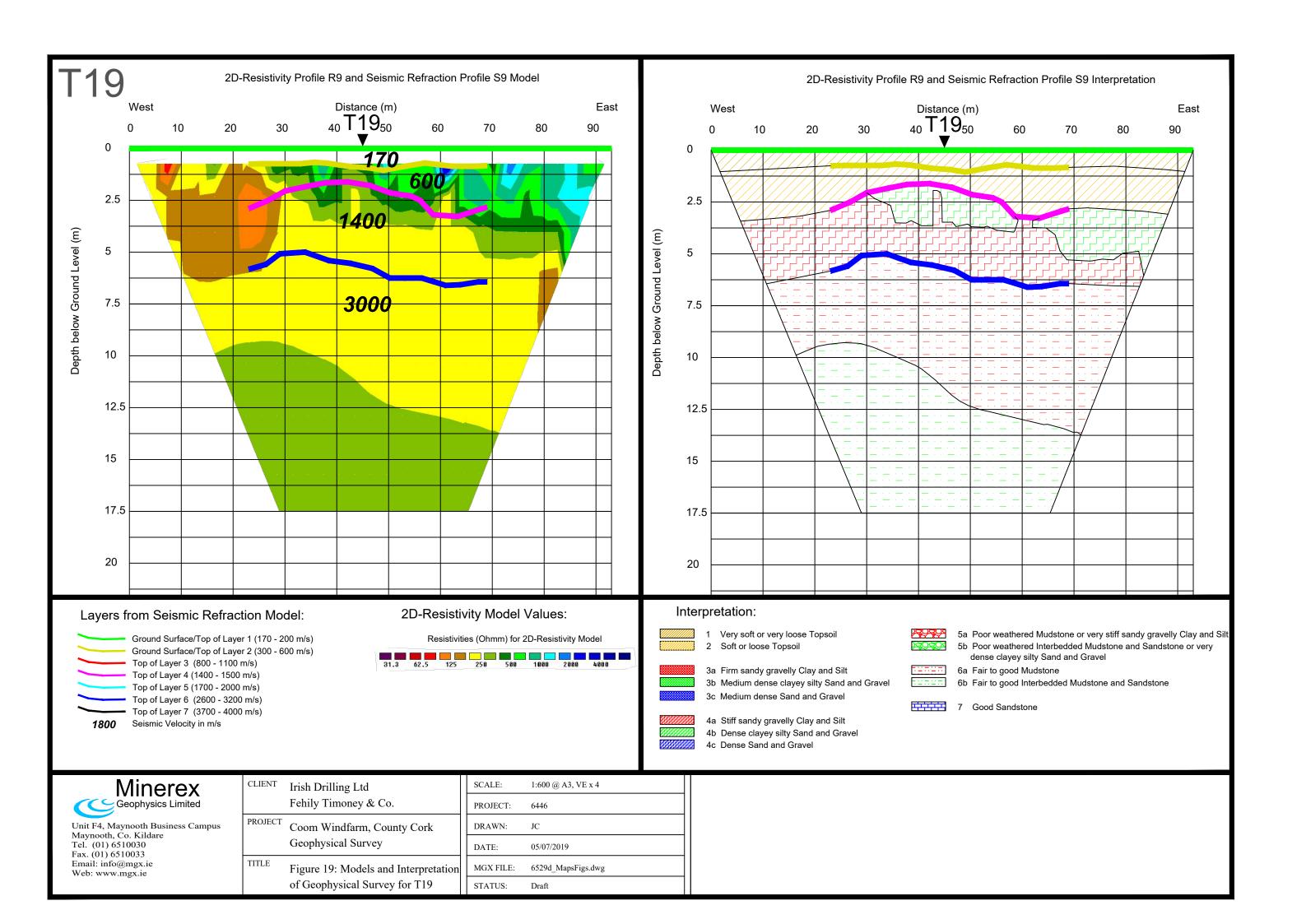


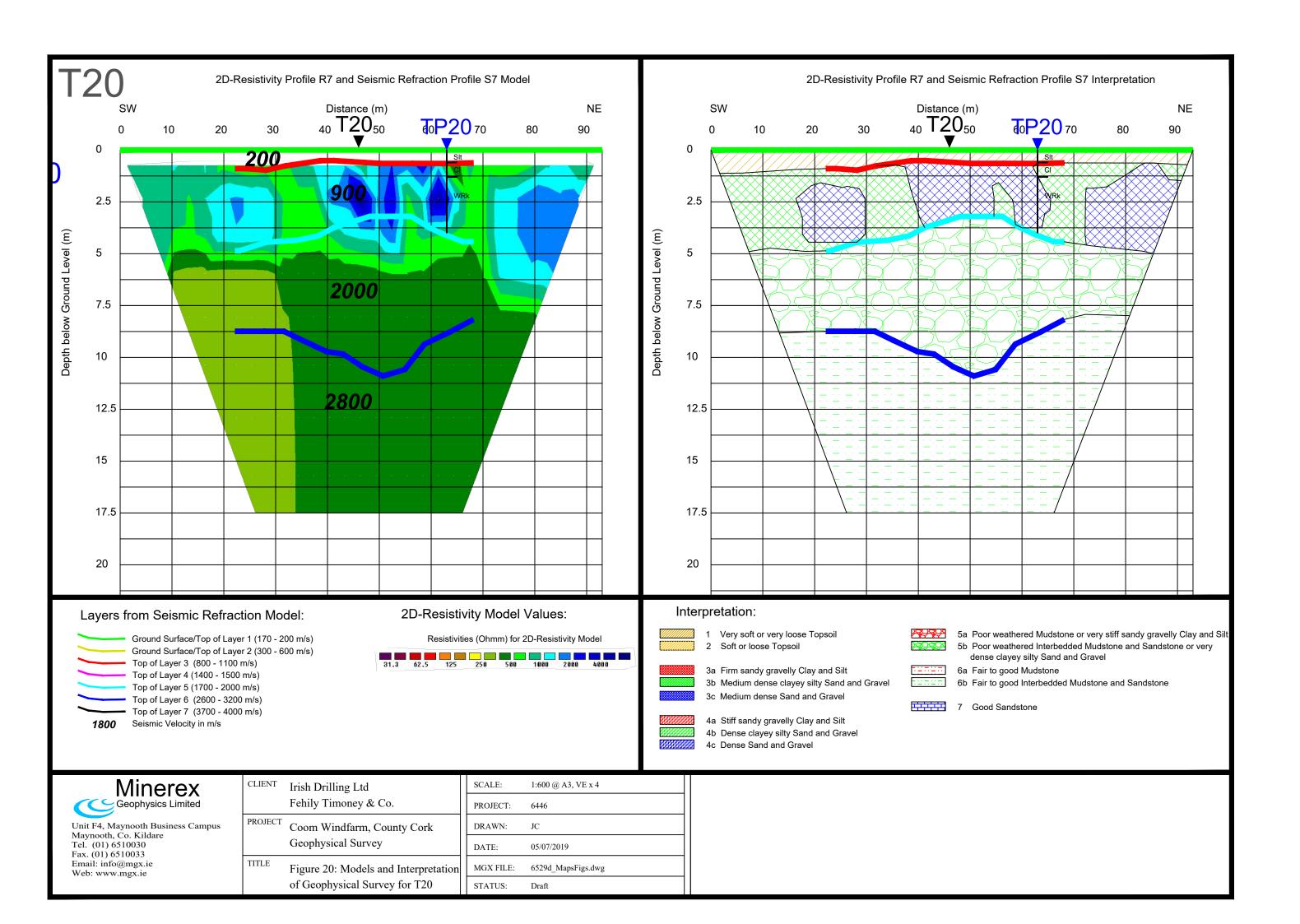


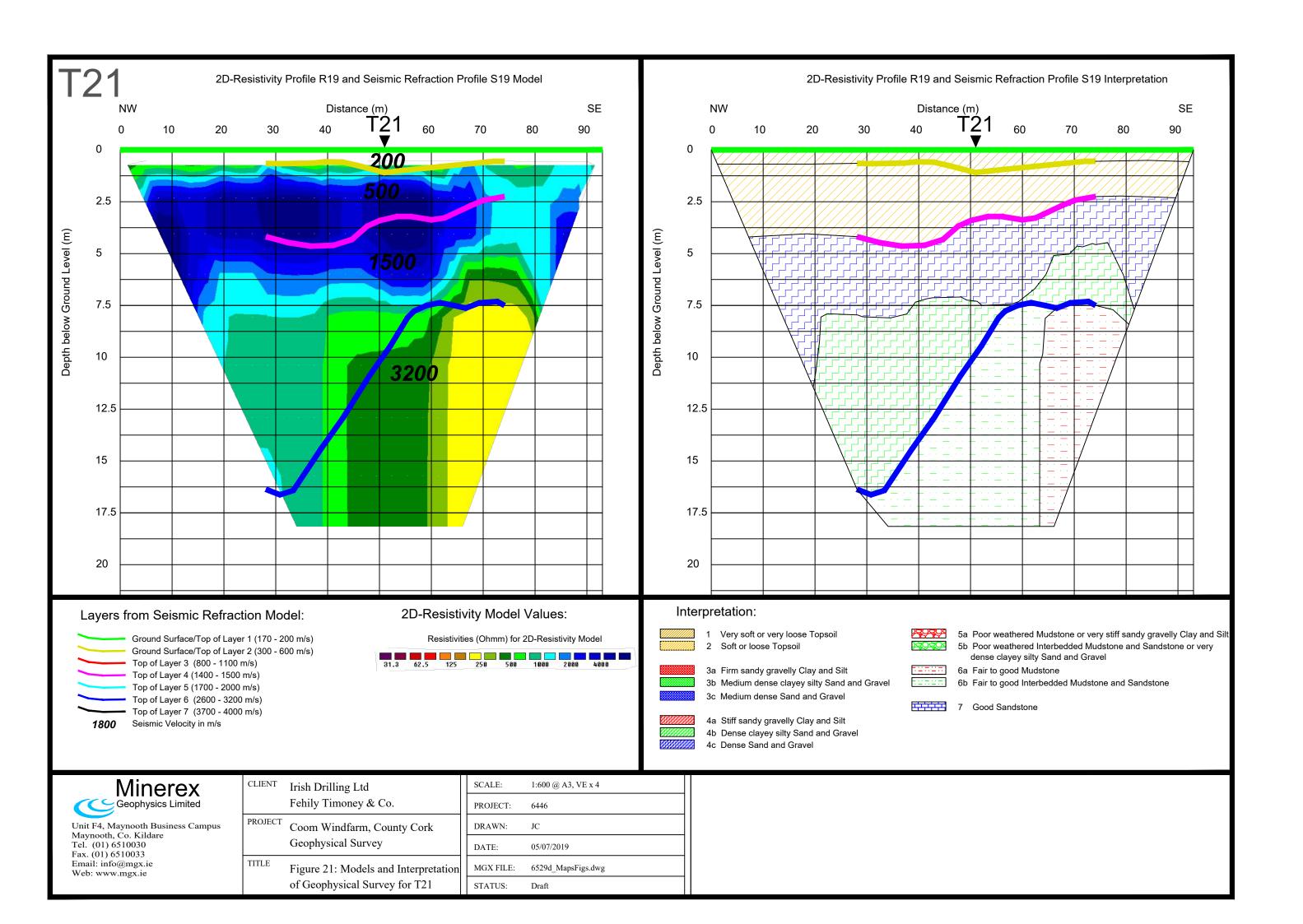


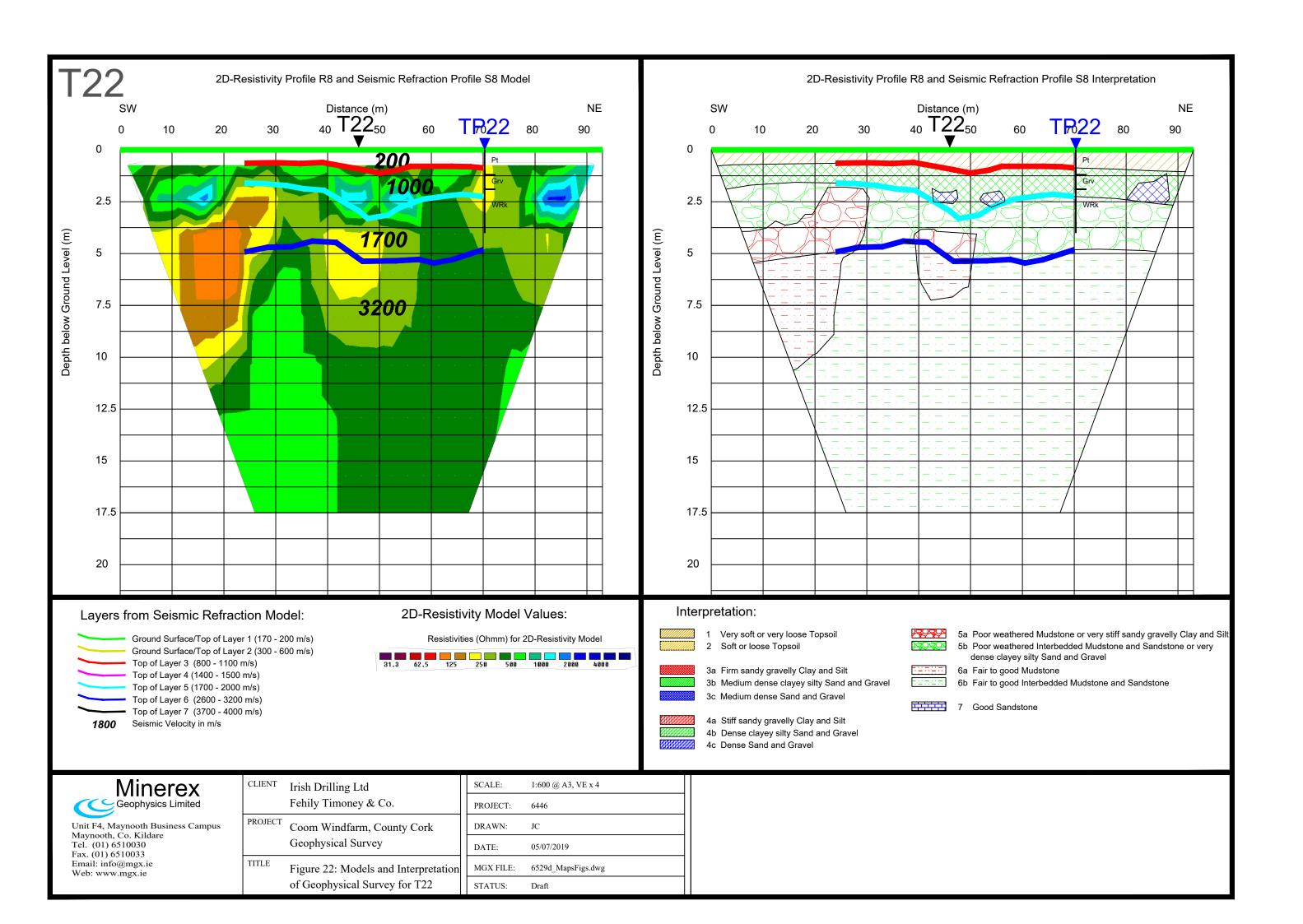


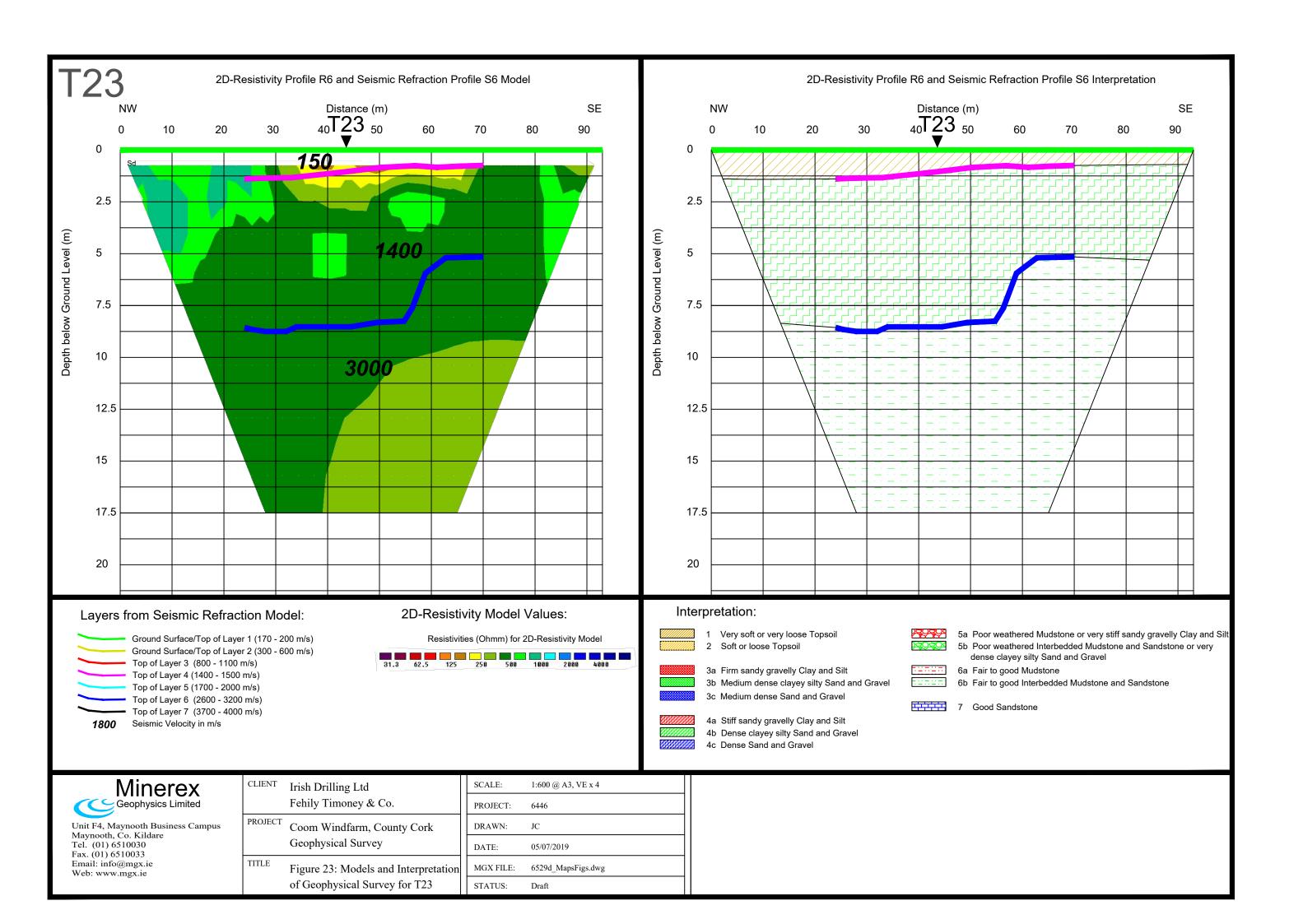












IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

APPENDIX 4

Directors: HERB M. STANLEY, B.Sc., B.A., (Canadian) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., RONAN KILLEEN, B.E., C.Eng., M.I.E.I., (Secretary) Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

Project ID	2019C106
Project Name	Coom Wind Farm
Schedule ID	2019C106 1

Client	Coillte
Due Date	01/07/2019 10:41
Scheduled Date	01/07/2019 10:41

Remarks			

							1																			1			
		•						01							21							_							0 "1 "1"
		Sam	ple Detail	S	1			Clas	sifica				1	(Jhen	nical /	Con	crete	9	1		Cor	npac	tion			I		Compressibility
Location	Depth (m)	Base Depth	Sample Type	Sample Ref	Date Sampled	Storage	Moisture Content	Atterberg 4 Point	Particle Density by Gas Jar	Particle Density by Small Pyknometer	Particle Size Distribution	Hydrometer	Organic Content	Loss On Ignition	Sulphate Total	Sulphate Water Gravimetric	Carbonate Titration	hd	Chloride Content	Chloride Content Acid	Compaction Light	Compaction Heavy	Compaction Vibrating Hammer	Moisture Condition Value	Moisture Condition Relationship	CBR	Consolidation	Pressures	
	0.50	0.70	В	1	19/06/2019		1			_	1		Ū		1			1	1		Ū					Ĭ	Ĭ		ALS report 190730-36
BP1-TP01	1.50	1.70	В	2	19/06/2019		1				1				1			1	1						1				ALS report 190730-36
	2.20	2.30	В	3	19/06/2019						_				_														1
	0.50	0.70	В	1	19/06/2019		1				1																		
BP1-TP02	1.20	1.40	В	2	19/06/2019		1				1																		
BP1-TP02	2.40	2.60	В	3	19/06/2019						_																		
	0.70	0.90	В	1	19/06/2019		1				1																		
	1.70	1.90	В	2	19/06/2019		1				1																		
	0.80	1.00	В	1	17/06/2019																								
BP2-TP01	1.80	2.00	В	2	17/06/2019		1				1				1			1	1						1				ALS report 190730-36
	2.20	2.40	В	3	17/06/2019						-								-										
	1.10	1.30	В	1	17/06/2019		1				1																		
	2.00	2.20	В	2	17/06/2019		1				1																		
	2.80	3.00	В	3	17/06/2019		İ																						
	0.50	0.70	В	1	17/06/2019		1	1			1														1				
	1.60	1.80	В	2	17/06/2019		l																						
	2.50	2.70	В	3	17/06/2019		1				1																		
	3.30	3.50	В	4	17/06/2019																								
	1.00	1.20	В	1	17/06/2019		1				1																		
	2.00	2.20	В	2	17/06/2019																								
	2.80	3.00	В	3	17/06/2019		İ																						
	0.70	0.90	В	1	18/06/2019		1	1			1				1			1	1						1				ALS report 190730-36
	0.70	0.90	D	2	18/06/2019		l																						·
BP3-TP01	1.30	1.50	В	3	18/06/2019		1	1			1																		

Project ID	2019C106
Project Name	Coom Wind Farm
Schedule ID	2019C106_1

Client Coillte	
Due Date 01/07/2	2019 10:41
Scheduled Date 01/07/2	2019 10:41

Remarks			-

							<u> </u>														1					1				
		Sam	ple Detail	S				Cla	ssifica	ation				(Chen	nical ,	Con	crete	Э			Cor	mpac	tion					Compressibility	y
										er																				
										net																				
										nor													ē		hip					
									`≂	Pyk						. <u>2</u>							ш		suc					
									S J	Iall	uc					neti							Hammer	ne	latic					
									Gas Jar	Particle Density by Small Pyknometer	Particle Size Distribution					Gravimetric	_			Si			ng	Moisture Condition Value	Moisture Condition Relationship					
							ŧ	Ħ	Particle Density by	by	strik		±	_			Carbonate Titration)t	Chloride Content Acid	Ħ	Compaction Heavy	Compaction Vibrating	io	ion					
			Φ		8		Content	Atterberg 4 Point	sity	sity	Ö		Organic Content	Loss On Ignition	tal	Sulphate Water	itra		Chloride Content	Jer	Compaction Light	He	Vib	lg:	ndit		_			
	<u> </u>	Depth	Туре	Ref	Date Sampled		ပိ	4	Je J)en	Size	ter	Sor	lgn	Sulphate Total	Ň	E –		Co	Ō	Ö	ion	ion	ပိ	ပိ		Consolidation			
ion	π) (De	<u>e</u>	96	Sar	ge	ure) Serç	<u>e</u>] el	le 8	me)ic	ő	ate	ate	ona		de	g	act	act	act	nre	ure		pic			
Location	Depth (m)	Base	Sample [·]	Sample	ate	Storage	Moisture	terk	l ji	artic	artic	Hydrometer	gar	SS	u dır	dır	arbc	_	Jor	آو ا	Щ	шć	шć	oist	oist	CBR	Suc	_		
						St	Ž	Αŧ	ď	Pē	P	Į,	ō	Lc	รั	હ	Ö	Ь	Ö	Ö	ŏ	ŏ	ŏ	Ž	Ž	ਹ	ŏ	Pressures		
	1.30	1.50 2.70	D B	4	18/06/2019		-		ļ																					
	2.50 3.30	3.50	В	5 6	18/06/2019 18/06/2019		<u> </u>																							
	0.40	0.60	В	1	17/06/2019																									
	0.40	0.60	D	2	17/06/2019																									
	1.40	1.60	В	3	17/06/2019		1	1			1														1					
	2.60	2.80	В	4	17/06/2019		1	1			1														Ė					
	2.60	2.80	D	5	17/06/2019		Ė	Ė			•				1			1	1										ALS report 1907	730-36
	3.30	3.50	В	6	17/06/2019		1	1			1				-			-	-											
	0.30	0.50	В	1	19/06/2019						-																			
	1.00	1.20	В	2	19/06/2019		1				1				1			1	1						1				ALS report 1907	730-36
	2.20	2.40	В	3	19/06/2019																								-	
TP-T20	0.20	0.40	В	1	18/06/2019		1	1			1				1			1	1						1	1			ALS report 1907	730-36
TP-T20	1.30	1.50	В	2	18/06/2019																									
	3.00	3.20	В	3	18/06/2019																									
	0.50	0.70	В	1	18/06/2019		1	1			1														1				<u> </u>	
TP-T22	1.50	1.70	В	2	18/06/2019		1				1															1				
	2.40	2.60	В	3	18/06/2019																									
	3.40	3.60	В	4	18/06/2019																									
	0.40	0.60	В	1	18/06/2019																									
	1.20	1.40	В	2	18/06/2019		1				1				1			1	1										ALS report 1907	730-36
	2.20	2.40	В	3	18/06/2019			_																						
	3.20	3.40	В	4	18/06/2019		1	1			1				1			1	1							1			ALS report 190	730-36
TP-T23	3.20	3.40	D	5	18/06/2019																									

Project ID	2019C106											Client	Coil	lte							Rer	marks	3	
Project Name Schedule ID	Coom Wii 2019C106_1	nd Far	m							Sche		e Date d Date												
		San	nple Detai	ls			Clas	sifica	tion				Chen	nical /	Cond	crete			C	ompa	action	1		Compressibility
	(1	pth	Гуре	λef	mpled	Content	y 4 Point	Gas Jar	Density by Small Pyknometer	Size Distribution	Content	Ignition	Total	Water Gravimetric	te Titration		Content	Content Acid	lion Light	tion Vibrating Hammer	ndition Va	Condition Relationship		ation

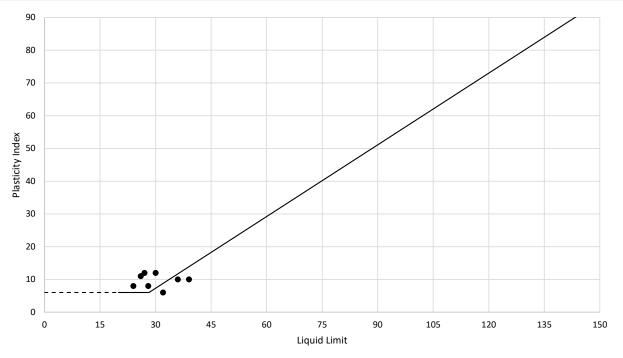
23 9 0 0 23 0 0 0 9 0 0 9 9 0 0 0 0 8 3 0

scheduled (2.7.19) Completed (10.9.19)

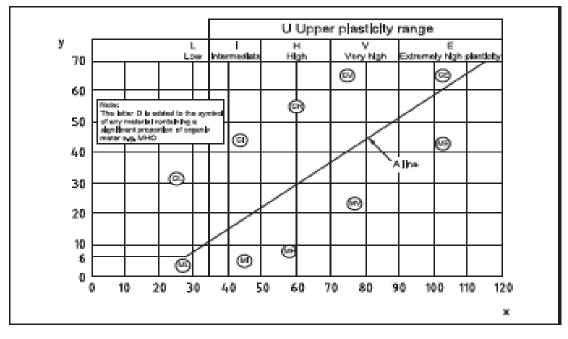
Summary of Classification Test Results

Project No. Project Name

2019C106


Coom Wind Farm

Sample															
Holo No	Sample lole No. Ref Top Base Type		•	Soil Description	Densi bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Remarks		
noie ivo.	Ref	Тор	Base	Туре		Soil Description	Mg/m	-	%	%	%	%	%	Mg/m3	Remarks
BP1-TP01	1	0.50	0.70	В		Orange very silty SAND and GRAVEL.			13.0	54					
BP1-TP01	2	1.50	1.70	В		Brown silty sandy medium and coarse GRAVEL.			19.0	26					
BP1-TP02	1	0.50	0.70	В		Brown silty very sandy coarse GRAVEL.			16.0	27					
BP1-TP02	2	1.20	1.40	В		Orange-brown silty very sandy GRAVEL.			13.0	40					
BP1-TP03	1	0.70	0.90	В		Orange-brown very silty very sandy GRAVEL.			16.0	45					
BP1-TP03	2	1.70	1.90	В		Orange-brown very sandy very silty coarse GRAVEL.			22.0	45					
BP2-TP01	2	1.80	2.00	В		Reddish-brown sandy silty medium and coarse GRAVEL.			15.0	25					
BP2-TP02	1	1.10	1.30	В		Brown very sandy very silty coarse GRAVEL.			13.0	40					
BP2-TP02	2	2.00	2.20	В		Orange-brown sandy silty coarse GRAVEL.			17.0	20					
BP2-TP03	1	0.50	0.70	В		Brown very silty very sandy medium and fine GRAVEL.			17.0	41	32	26	6		ML
BP2-TP03	3	2.50	2.70	В		Grey slightly sandy slightly silty angular coarse GRAVEL.			8.4	6					
BP2-TP04	1	1.00	1.20	В		Brown sandy very silty coarse GRAVEL.			12.0	34					
BP3-TP01	1	0.70	0.90	В		Brown slightly gravelly sandy CLAY.			26.0	86	28	20	8		CL
BP3-TP01	3	1.30	1.50	В		Purplish-brown slightly gravelly sandy SILT.			12.0	67					NP
BP3-TP03	3	1.40	1.60	В		Reddish-brown slightly gravelly sandy CLAY.			11.0	72	24	16	8		CL
BP3-TP03	4	2.60	2.80	В		Reddish-brown slightly gravelly sandy CLAY.			11.0	72	27	15	12		CL
BP3-TP03	6	3.30	3.50	В		Reddish-brown slightly gravelly sandy CLAY.			12.0	80	26	15	11		CL
TP-T13	2	1.00	1.20	В		Brown very silty very sandy medium and fine GRAVEL.			13.0	42					
TP-T20	1	0.20	0.40	В		Reddish-brown very gravelly very silty SAND.			23.0	61	39	29	10		МІ
TP-T22	1	0.50	0.70	В		Yellowish-brown slightly gravelly very silty fine and medium SAND.			31.0	86	36	26	10		МІ
TP-T22	2	1.50	1.70	В		Brown very silty very sandy GRAVEL.			12.0	41					
TP-T23	2	1.20	1.40	В		Brown very silty SAND and GRAVEL.			9.9	51					
TP-T23	4	3.20	3.40	В		Reddish-brown slightly gravelly sandy CLAY.			13.0	68	30	18	12		CL


All tests performed in accordance with BS1377:1990 unless specified otherwise

Key				Date Printed	Approved By	Table	
	Density test	Liquid Limit	Particle density				1
	Linear measurement unless:	4pt cone unless :	sp - small pyknometer	09/10/2019 00:00			•
	wd - water displacement	1pt - single point test	gj - gas jar			sheet	
	wi - immersion in water	NP - Non Plastic		QC From No: R1	DCD (10.09.19)		1

DRI		Plasticity (A-Line) Chart	Project Number
25H WILLIAM	Project Name:	Coom Wind Farm	
LIMITED	Location:		2019C106

Plasticity chart

		DRI.			D.	DTIO	. F 017F	DIO	TDI	NITION		Job Ref	20	019C106
IRIG	SY M	DRILL	200		PA	ARTIC	LE SIZE	סוט.	IKI	SUTION		Borehole/Pit No.	В	P1-TP01
s	ite Na	me		Coor	n Wind F	arm						Sample No.		1
s	oil Des	scription	1	Oran	ge very sil	ty SANE	and GRAV	EL.				Depth, m		0.50
	pecim eferen						Specimer Depth	n			m	Sample Type		В
Т	est Me	ethod		BS13	77:Part 2:	1990, cl	ause 9.2					KeyLAB ID	IDL12	20190627668
	-	CLAY	Fin		SILT Medium	Coarse	e Fine		SAND ledium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100				Wedium	Coarse	Fille	IVI	lealam	Coarse	Fille	Wedium Coarse		.
	90													
	80													
%	70													
ssing	60													
Percentage Passing	50													
rcenta	40	40 · · · · · · · · · · · · · · · · · · ·						/						
Pe	30													
	20													
	10													
							0.1	<u> </u>		1		10	100	1000
									Par	icle Size	mm			
			Sia	ving		П	Sedime	ntatio	n .					
	P	article S mm			Passing	Par	ticle Size		Passir	ng	Dry M	lass of sample, g		827
							111111				Sample Pr		%	dry mass
	-	75			100						Very coarse Gravel	<u> </u>		37
		63			100						Sand			34
		50			100	_					Eines (C.C.	62mm	<u> </u>	20
	-	37.5 28		-	100	-					Fines <0.06	USITIIII	<u> </u>	29
		20			92						Grading A	nalysis	L	
		14			82						D100	mm		
	-	10		-	80	_					D80	mm	<u> </u>	1.28
	-	6.3 5			76 73	-					D30 D10	mm	1	0.0797
	-	3.35			68	-					Uniformity	Coefficient	1	
	3.35 68 2 64										Curvature (†	
	1.18 59												•	
	0.6 56					_					Remarks		24277 1	ated below
	0.425 54 0.3 48				54						Preparation an	d testing in accordance with BS	513// unless no	oted pelow
	0.3 48					\dashv								
	0.212 38													
	0.063 29													
	Operator Checker					d Approved					;	Sheet printed		
$\ \cdot\ $	Operator Check						Dympna Da		.Sc.		10	/09/2019 15:46		1
	in trich Drilling Ltd (IDI) Old Colug													QC From No:R2

	I	Dr.								Job Ref	20	019C106
IRVe	5 ² 4	DRILLIA	16 0	P	ARTICI	LE SIZE	DISTRII	BUTION		Borehole/Pit No.	ВІ	P1-TP01
s	ite Naı			Coom Wind I	arm					Sample No.		2
		scription		Brown silty sar	ndy mediu	um and coars	se GRAVE	L.		Depth, m		1.50
	pecim eferen					Specimen Depth			m	Sample Type		В
Т	est Me	ethod		BS1377:Part 2	:1990, cla	ause 9.2				KeyLAB ID	IDL12	0190627669
	_	CLAY	Fin	SILT e Medium	Coarse	Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100											
	90											
% bı	70											
Passin	60 · 50 ·											
Percentage Passing	40											
Perce	30											
	20											
	10											
	0 -											
	0.0	001	Sio	0.01 ving	-11	0.1		1 ticle Size	mm	10	100	1000
	Pa	article S mm		% Passing		ticle Size	% Passi	ng	Dry M	lass of sample, g		1337
									Sample Province Very coarse		%	dry mass
		75		100					Gravel			69
		63 50		100 100	+	+		-	Sand			18
		37.5		74					Fines <0.06	63mm		13
		28 20		69 61				_	Grading A	nalvsis	Ι	
		14		49					D100	mm		
		10		44					D60	mm		19.6
		6.3 5		38 37	-	-			D30 D10	mm	 	1.54
		3.35		34	\dashv	+		=	Uniformity (Coefficient mm		
		2		31					Curvature (
	1.18 29											
	0.6 27 0.425 26								Remarks Preparation and	d testing in accordance with BS	31377 unless no	ted below
		0.425		26	$-\parallel$			-	paranon an		u.11033 110	
		0.212		18								
	0.15 15 0.063 13											
		0.063		13								
	Operator Checke					d Approved				Sheet printed //09/2019 15:46		1
) Old Galway Ro		Dympna Dar						QC From No:R2

	L	D-									Job Ref	20	019C106
IRIC	5. A.	DRILLIA	á	P.A	ARTIC	LE SIZE	DIST	RIBUT	ION		Borehole/Pit No.	В	P1-TP02
s	ite Nar		_	Coom Wind F	arm						Sample No.		1
s	oil Des	scription		Brown silty very	sandy o	coarse GRA	VEL.				Depth, m		0.50
	pecime eferen					Specimer Depth	1			m	Sample Type		В
Т	est Me	thod		BS1377:Part 2:	1990, cla	ause 9.2					KeyLAB ID	IDL12	20190627671
		CLAY	Fin	SILT e Medium	Coarse	Fine	SA Med		oarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100 -								П				
	90 -												
%	80 - 70 -												
assing	60 -												
Percentage Passing	50 -												
Percer	40 - 30 -												
	20 -												
	10 -												
	0 -					0.1			1		10	100	1000
	0.0	JO 1		0.01		0.1		Particle	ı Size r	nm	10	100	1000
		article Si		ving	Dor		Sedimentation le Size			Dry M	ass of sample, g		670
	P 6	mm	ze	% Passing	Pan	mm	% P	assing	┤,	Sample Pro	onortions	0/.	dry mass
] [Very coarse		76	0
		75 63		100 100	-				4 4	Gravel Sand			65 25
		50		100					1 }	Jana			20
		37.5		100] [Fines <0.06	33mm		10
	-	28 20		88 55	+				∮ г	Grading Ar	nalveis	1	
		14		49	+					D100	mm		
		10		47					1 [D60	mm		21.1
		6.3		43						D30	mm		1.01
	5 41									D10	mm	<u> </u>	
	-	3.35		39 35	╂—					Uniformity (Curvature C		+	
	1.18 31				+				┧┖	Ja. valuit (- Comorona	ļ	
	0.6 28				 					Remarks			
		0.425		27	1				1	Preparation and	d testing in accordance with BS	S1377 unless no	oted below
	0.3 24 0.212 17												
	0.212 17 0.15 13												
	0.063 10]				
	Operator Checker					Appro				Sheet printed			1
) Old Galway Roa		Dympna Da				10/	/09/2019 15:46		QC From No:R2

	Do								Job Ref	20	019C106
IRVe	DRILL	200	P#	ARTIC	LE SIZE	DISTR	IBUTION		Borehole/Pit No.	BF	P1-TP02
s	ite Name		Coom Wind F	arm					Sample No.		2
	oil Descriptio	n	Orange-brown	silty very					Depth, m		1.20
	pecimen eference				Specimen Depth			m	Sample Type		В
Т	est Method		BS1377:Part 2:	1990, cl	lause 9.2				KeyLAB ID	IDL12	0190627672
	CLAY	Fir	SILT ne Medium	Coarse	e Fine	SAND		Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100										
	90										
	70										
% guiss	60										
Percentage Passing	50										
ercenta	40										
۵	30										
	20										
	10										
	0.001		0.01		0.1	P	1 article Size	mm	10	100	1000
			ving	T_	Sedimer	ntation		Dry M	lass of sample, g		833
	Particle 9	Size	% Passing	Par	rticle Size mm	% Pas	sing			0/	drymass
				╂				Sample Province Very coarse		%	dry mass 0
	75		100					Gravel		<u> </u>	52
	63		100					Sand			31
	50 37.5		100 100					Fines <0.06	S3mm		17
	28		100	+				1 11103 <0.00	Jonnin .	l	17
	20		90					Grading A	nalysis		
	14		81					D100	mm		
	10		75	4				D60	mm		5.34
	6.3		63 59					D30 D10	mm		0.264
	3.35		53	+				Uniformity (mm_ Coefficient		
	2		48	+				Curvature (
	1.18 44										
	0.6 42							Remarks			
	0.425 40 0.3 33							Preparation and	d testing in accordance with BS	1377 unless not	ted below
	0.3 33 0.212 24										
	0.212 24 0.15 19										
	0.063		17								
	Operator		Checked	ked Approved				Sheet printed		1	
					Dympna Dai	rcy B.Sc.		10/	/09/2019 15:46		QC From No:R2

	D 5								Job Ref	20	19C106
IRVe	DRILL	200	P/	ARTIC	LE SIZE [DISTRI	BUTION		Borehole/Pit No.	BF	P1-TP03
s	ite Name		Coom Wind F	arm					Sample No.		1
	oil Descriptior	n	Orange-brown	very silty		GRAVEL.			Depth, m		0.70
	pecimen eference				Specimen Depth			m	Sample Type		В
Т	est Method		BS1377:Part 2	:1990, cl	lause 9.2				KeyLAB ID	IDL12	0190627674
	CLAY	Fin	SILT e Medium	Coarse	e Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100										
	90										
%	70										
Passing	60										
Percentage Passing	50 40										
Perce	30										
	20										
	10										
	0.001		0.01		0.1		1		10	100	1000
						Pai	ticle Size	mm			
	Particle S		ving	Par	Sedimen	tation		Dry M	ass of sample, g		788
	mm	DIZE	% Passing	Fai	mm	% Passi	ng	Sample Pro	oportions	% dry mass	
								Very coarse		,,,	0
	75		100					Gravel			47
ĺ	63		100					Sand			32
	50		100	_				Einaa (C.C.)	22mm		22
ĺ	37.5 28		88 88		+			Fines < 0.06	DOMIN		22
	20		83	\dashv				Grading A	nalysis	1	
	14		68	1				D100	mm		
	10		65					D60	mm		5.6
ĺ	6.3		61					D30	mm		0.244
	5		59	_				D10	mm		
	3.35		57	-				Uniformity (
	1.18		53 50	-				Curvature C	Joeπicient		
	0.6		46	\dashv			$\overline{}$	Remarks			
	0.425		45						d testing in accordance with BS	1377 unless not	ted below
	0.3		36								
	0.212		26								
	0.15 23										
	0.063		22								
	Operator		Checke	necked Approved				Ş	Sheet printed		1
					Dympna Daro	cy B.Sc.		10/	/09/2019 15:46		QC From No:R2

	1								Job Ref	20	019C106
IRVe	DRIL	120	P.	ARTIC	LE SIZE	DISTRI	BUTION		Borehole/Pit No.	ВГ	P1-TP03
s	ite Name		Coom Wind	Farm					Sample No.		2
	oil Description	on	Orange-brown	very sar		coarse GR	AVEL.		Depth, m		1.70
	pecimen eference				Specimen Depth			m	Sample Type		В
Т	est Method		BS1377:Part 2	:1990, cl	lause 9.2				KeyLAB ID	IDL12	0190627675
	CLAY	Fir	SILT ne Medium	Coarse	e Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100										
	90								/		
%	70										
assing	60										
Percentage Passing	50										
Percer	30										
	20										
	10										
	0.001		0.01		0.1		1		10	100	1000
						Pa	rticle Size	mm			
			ving		Sedimer	itation		Dry M	ass of sample, g		747
	Particle mm		% Passing	Par	rticle Size mm	% Pass	ing	Sample Pro		0/2	dry mass
				-				Very coarse		70	0
	75		100					Gravel			49
	63		100					Sand			23
	50		100								
Ī	37.5		100	-				Fines < 0.06	osmm	ļ	29
	28		87 66	+	+			Grading A	nalvsis	I	
	14		60	+	+			D100	mm		
	10		58	\top				D60	mm		14.1
Ī	6.3		55					D30	mm		0.132
	5		54					D10	mm		
	3.3	5	53					Uniformity (
	2 51							Curvature C	Coefficient		
	1.18 49 0.6 47							Remarks			
	0.6 47								d testing in accordance with BS	1377 unless no	ted below
	0.3 40						$\overline{}$		•		
	0.21		34	1							
	0.15		30								
	0.06	3	29								
	Operator		Checke	d Approved				Sheet printed		1	
					Dympna Dar	cy B.Sc.		10/	/09/2019 15:46		QC From No:R2

	L	Da											Job Ref		2	019C106	
IRL	5th 4	DRILL	6		PAF	RTICL	E SIZE	DIS	TRIE	BUTI	ON		Borehole/Pit N	No.	E	3P2-TP01	\dashv
s	ite Naı			Coom W	ind Fa	rm							Sample No.			2	
S	oil Des	scription	ı	Reddish-b	orown sa	andy silty	y medium	and co	oarse	GRA\	/EL.		Depth, m			1.80	
	pecim eferen						Specime Depth	n				m	Sample Type			В	
Т	est Me	ethod		BS1377:F	Part 2:19	90, clau	ıse 9.2						KeyLAB ID		IDL1	2019062767	77
	-	CLAY	Fin	SIL e Med		Coarse	Fine		AND edium	Co	arse	Fine	GRAVEL Medium Co	arse	COBBLES	BOULDERS	
	100																$\overline{\Box}$
	90												<i></i>				
%	70																
ssing 9	60																
Percentage Passing	50		-														
rcenta	40																
Pe	30																
	20																
	10																
	0.0	001		0.0	1		0.1		<u> </u>	1	!		10	! ! []	100		1000
									Part	icle S	ize	mm					
			Sie	ving	1		Sedime	entatio	n								
	Pa	article S mm		% Pas	sing		cle Size	% Passing				Dry N	Mass of sample	, g		871	
												Sample Proportions Very coarse			% dry mass		
		75		100)							Gravel				66	
		63		100								Sand				16	
	-	50 37.5		100 100				-				Fines <0.0	163mm			18	
		28		94						=		11100 <0.0	OJIIIII]	10	
		20		75								Grading A	nalysis				
		14		65								D100		mm		40.0	
		10 6.3		58 49								D60 D30		mm mm		10.8 1.25	
		5		49								D30 D10		mm		1.20	
		3.35		39									Coefficient				
		2		34									Coefficient				
	1.18 30 0.6 26																_
	0.6 26											Remarks Preparation as	nd testing in accordanc	e with RS	1377 unless n	oted below	
	-	0.425		22								. reparation at	wowg iii dooordand			DOIOW	
		0.212		20													
	0.15 18					킈											
	0.063 18																
	Operator Checked					d Approved				Sheet printed			1				
) Old Galwa			ympna Da					10	0/09/2019 15:46			QC From	No:R2

	De.					-			Job Ref	20	19C106
' IRL	DRILL	1200	P	ARTIC	LE SIZE	DISTRI	BUTION		Borehole/Pit No.	BF	P2-TP02
Si	ite Name		Coom Wind	Farm					Sample No.		1
S	oil Descriptio	n	Brown very sa	ndy very	silty coarse (GRAVEL.			Depth, m		1.10
	pecimen eference				Specimen Depth			m	Sample Type		В
Te	est Method		BS1377:Part 2	:1990, cl	lause 9.2				KeyLAB ID	IDL12	0190627679
	CLAY	Fir	SILT ne Medium	Coarse	e Fine	SAND	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100										
	90								/ //		
	70										
assing %	60										
Percentage Passing	50										
Percel	30										
	20										
	10										
	0.001		0.01		0.1		1		10	100	1000
						Pa	rticle Size	mm			
			ving		Sedimer	ntation		Dry M	lass of sample, g		846
	Particle s mm		% Passing	Par	rticle Size mm	% Pass	ing	Sample Pro		0/_	dry mass
				╫				Very coarse		/0	0
	75		100					Gravel			54
	63		100					Sand			21
	50		100	4—				Fig. 2. 2. 1	20		200
	37.5 28		83 78	-				Fines <0.06	DOININ		26
	20		64	+				Grading A	nalvsis		
	14		57	+				D100	mm		
	10		55	1				D60	mm		16.5
	6.3		52					D30	mm		0.213
	5		50					D10	mm		
	3.35		48					Uniformity (
	2		46	4—				Curvature C	Coefficient		
	1.18 0.6		44 42	+				Remarks			
	0.6	5	42	\dashv					d testing in accordance with BS	1377 unless not	ted below
	0.42	_	35	+			$\overline{}$		÷		
	0.212	2	30	1							
	0.15		27								
	0.063	3	26								
	Operator		Checke	cked Approved				5	Sheet printed		1
					Dympna Dai	rcy B.Sc.	1	10/	/09/2019 15:46		QC From No:R2

	1	Dr								Job Ref	20	19C106
IRVE	3.4. J	DRILL	60	P/	ARTIC	LE SIZE	DISTF	RIBUTIO	ON	Borehole/Pit No.	ВГ	P2-TP02
s	ite Na			Coom Wind F	arm					Sample No.		2
S	oil Des	scription		Orange-brown	sandy sil	ty coarse GF	RAVEL.			Depth, m		2.00
	pecim eferen					Specimen Depth			m	Sample Type		В
Т	est Me	ethod		BS1377:Part 2	:1990, cla	ause 9.2				KeyLAB ID	IDL12	0190627680
	_	CLAY	Fin	SILT e Medium	Coarse	Fine	SANI		rse Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100											
	90											
% Bu	70 60											
Passir	50									/		
Percentage Passing	40											
Perc	30											
	20											
	10											
	0	001		0.01		0.1		1		10	100	1000
		001		0.01				article Siz	ze mm	·	100	1000
	P	article S mm		wing % Passing	Part	Sedimer ticle Size mm	ntation % Pas	ssing	Dry M	ass of sample, g		743
									Sample Province Very coarse		% dry mass	
		75		100					Gravel	-		75
		63		100					Sand			11
	-	50 37.5		100 100	+				Fines < 0.06	63mm		14
		28		69								
		20 14		49 42					Grading A		<u> </u>	
		10		38	+	+		-+	D100	mm mm		24
		6.3		34					D30	mm		4.11
		5		32					D10	mm		
		3.35		28 25	-				Uniformity (Curvature (
	2 25 1.18 22								Curvature (ociiiociil	<u> </u>	
	0.6 20								Remarks			
		0.425		20	1				Preparation and	d testing in accordance with BS	1377 unless no	ted below
		0.3		18 16	-							
	0.15 15											
	0.063 14											
	Operator Checked					d Approved				Sheet printed //09/2019 15:46		1
Щ) Old Galway Roa		Dympna Dai						QC From No:R2

	I	De.								Job Ref	20	019C106
IRVe	5 ² 4	DRILL	200	P <i>A</i>	ARTICI	LE SIZE	DIST	RIBUTION		Borehole/Pit No.	В	P2-TP03
s	ite Naı	me		Coom Wind F	arm					Sample No.		1
s	oil Des	scription	I	Brown very silty	very sar	ndy medium	and fin	e GRAVEL.		Depth, m		0.50
	pecim eferen					Specimen Depth			m	Sample Type		В
Т	est Me	ethod		BS1377:Part 2:	1990, cla	ause 9.2				KeyLAB ID	IDL12	20190627682
	_	CLAY	Fin	SILT e Medium	Coarse	Fine	SAI Med		Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100											
	90											
%	70											
assing	60											
age Pa	50											
Percentage Passing	40											
	30											
	20											
		10										
	0.0	001		0.01		0.1		1 Particle Size	mm	10	100	1000
	Pa	article S mm		wing % Passing		Sedimer icle Size mm		assing	Dry M	lass of sample, g		830
									Sample Province	-	%	dry mass
		75		100					Gravel	3		49
		63 50		100 100	-				Sand			28
		37.5		100	+				Fines < 0.06	63mm		24
		28		100							1	
		20 14		95 83					Grading A	nalysis mm		
		10		78					D60	mm		3.77
		6.3		67			_		D30	mm		0.219
		5		64					D10	mm		
	-	3.35		58 52					Uniformity (Curvature (
		1.18		46					Sarvature (Journal		
	0.6 43								Remarks			
		0.425		41					Preparation and	d testing in accordance with BS	1377 unless no	ted below
		0.3		37								
	-	0.212		29 25								
	0.063 24											
	Operator Checked					Appro	oved			Sheet printed 15:46		1
) Old Galway Roa		Dympna Dai			10/	10/09/2019 15:46 QC F		QC From No:R2

PARTICLE SIZE DISTRIBUTION Borehole/Pit No.	BP2-TP03 3 2.50 B IDL120190627684 COBBLES BOULDERS
Soil Description Grey slightly sandy slightly silty angular coarse GRAVEL. Depth, m Specimen Reference Specimen Depth m Sample Type Test Method BS1377:Part 2:1990, clause 9.2 KeyLAB ID CLAY SILT SAND GRAVEL	2.50 B IDL120190627684
Specimen Reference Specimen Depth m Sample Type Test Method BS1377:Part 2:1990, clause 9.2 KeyLAB ID CLAY SILT SAND GRAVEL Medium Coarse Fine Medium Coarse Fine Medium Coarse 90 80 70 90 60 90 40 90 40 90 90 90 9	B IDL120190627684
Reference Depth	IDL120190627684
CLAY SILT SAND GRAVEL Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse 90 80 70 80 60 80 40 30 80 80 80 80 80 80 80 80 80 80 80 80 80	
Discourage Fine Medium Coarse Fine Medium Fine Fine Fine Medium Fine Fine Fine Medium Fine Fine Fine Medium Fine Fine Fine Fine Medium Fine Fine Fine Medium Fine Fine Fine Fine Fine Fine Fine Fine	COBBLES BOULDERS
100 90 80 70 % 60 50 40 40	
80 -	
70 Serventage Passing 8	[<u> </u>
% 60	
De 60	
30	
30	
30	
20	
I I I I I I I I I I I I I I I I I I I	
10	
0.001 0.01 0.1 1 10	100 1000
Particle Size mm	
Sieving Sedimentation Particle Size	1151
mm / r dooming mm / r dooming Sample Proportions	% dry mass
Very coarse 75 100 Gravel	0 94
63 100 Sand	3
50 29	
37.5 13 Fines <0.063mm	4
20 10 Grading Analysis	
14 8 D100 mm	
10 8 D60 mm	55.3
6.3 8 D30 mm 5 7 D10 mm	50.1 28.7
3.35 7 Uniformity Coefficient	1.9
2 7 Curvature Coefficient	1.6
1.18 6	
0.6 6 Remarks 0.425 6 Preparation and testing in accordance with B	S1377 unless noted below
0.425 6 Preparation and testing in accordance with Bi	unicos noteu pelow
0.212 4	
0.15 4	
0.063 4	
Operator Checked Approved Sheet printed	
Dympna Darcy B.Sc. 10/09/2019 15:46	1

	Da							Job Ref	20	19C106
IRIC	N T	LING	P	ARTIC	LE SIZE DIS	STRIBUTIO)N	Borehole/Pit No.	BF	P2-TP04
s	ite Name		Coom Wind	-arm				Sample No.		1
	oil Descripti	on	Brown sandy v	ery silty o	coarse GRAVEL			Depth, m		1.00
	pecimen eference				Specimen Depth		m	Sample Type		В
Т	est Method		BS1377:Part 2	:1990, cla	ause 9.2			KeyLAB ID	IDL12	0190627686
	CLAY	/ Fir	SILT ne Medium	Coarse		SAND Medium Coar	se Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100									
	90							/		
	80							<i></i>		
% b(70									
Passir	50									
Percentage Passing	40									
Perc	30									
	20									
	10									
	0.001		0.01		0.1	1		10	100	1000
						Particle Size	e mm			
		Sie	eving	ll .	Sedimentat	ion				
	Particle mr	Size	% Passing	Part	ticla Siza	2 Passing	Dry M	ass of sample, g		853
							Sample Pro		%	dry mass
	75	j	100				Gravel			61
	63		100				Sand			19
	37.		81 71				Fines < 0.06	S3mm	-	20
	28		67				1 11165 <0.00	~ ппп	<u> </u>	20
	20		59				Grading A	nalysis		
	14		57				D100	mm		
	10		53				D60	mm		20.6
	6.3		47 45				D30 D10	mm	<u> </u>	0.249
	3.3		45				Uniformity (mm_ Coefficient		
	2		39				Curvature 0			
	1.1	8	37				<u> </u>			
	0.0		35				Remarks			
	0.42		34				Preparation and	d testing in accordance with BS	1377 unless not	ed below
	0.2		32 28							
	0.2		24	-						
	0.06		20							
	Operato	r	Checke	d	Approved		5	Sheet printed		1
					Dympna Darcy I	3.Sc.	10/	/09/2019 15:47		QC From No:R2
										GO I TOTTI NO.NZ

	De.								Job Ref	20	019C106
IRIS.	DRILL	200	P <i>A</i>	ARTIC	LE SIZE DI	STRIB	JTION		Borehole/Pit No.	В	P3-TP01
Sit	te Name		Coom Wind F	arm					Sample No.		1
Sc	oil Description	n	Brown slightly g	ravelly	sandy CLAY.				Depth, m		0.70
	oecimen eference				Specimen Depth			m	Sample Type		В
Те	est Method		BS1377:Part 2:	1990, cl	lause 9.2				KeyLAB ID	IDL12	20190627689
	CLAY	Fin	SILT ie Medium	Coarse	e Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100	FIN	le Medium	Coarse	e Fine	vieaium	Coarse	Fine	Medium Coarse		:
	90										
	80										
%	70				 	/					
sing 9	60										
Percentage Passing	50										
entag	40										
Perc	30										
	20										
	10										
	0.001		0.01		0.1		1		10	100	1000
	0.001		0.01		0.1	Partic	le Size	mm	10	100	1000
		Sie	ving	1	Sedimentat	ion	_				
	Particle S		% Passing	Par	rticle Size	6 Passing		Dry M	ass of sample, g		844
								Sample Pro		%	dry mass
	75		100	╫				Gravel	-		9
	63		100					Sand			50
	50 37.5		100 100	╂—			\dashv	Fines < 0.06	53mm		41
	28		100								
	20 14		97 97	1			_	Grading Ar D100			
	10		97	+				D100 D60	mm mm		0.182
	6.3		96					D30	mm		
	5		95					D10	mm		
	3.35		94 92	-			_	Uniformity (Curvature (
	1.18		92	╂			-	Curvature C	oociiioletit		
	0.6		88		I			Remarks			
	0.425	5	86	1				Preparation and	d testing in accordance with BS	1377 unless no	ted below
	0.3)	80 66	4							
	0.212		53	\dashv							
	0.063		41	1							
	Operator		Checked	ı	Approved	·		5	Sheet printed		1
					Dympna Darcy I	B.Sc.		10/	/09/2019 15:47		QC From No:R2

F	I							Job Ref	20	019C106
IRIC	DRILL	200	P#	RTIC	LE SIZE DIS	STRIBUTIO	N	Borehole/Pit No.	BF	P3-TP01
s	ite Name		Coom Wind F	arm				Sample No.		3
S	oil Description	1	Purplish-brown	slightly (gravelly sandy Sl	LT.		Depth, m		1.30
	pecimen eference				Specimen Depth		m	Sample Type		В
Т	est Method		BS1377:Part 2:	1990, cla	ause 9.2			KeyLAB ID	IDL12	0190627691
	CLAY	Fin	SILT ie Medium	Coarse		SAND Medium Coars	e Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100									
	90									
	80									
% f	70									
assing	60									
Percentage Passing	50									
Percer	40									
	30									
	10									
	0									
	0.001		0.01		0.1	1 Particle Size	mm	10	100	1000
	Particle S		ving 	Part	Sedimentati		Dry M	lass of sample, g		690
	mm		% Passing	-	mm %	Passing	Sample Pr	oportions	%	dry mass
							Very coarse		,,	0
	75		100				Gravel			25
	63		100 100				Sand			40
	50 37.5		100	-			Fines <0.06	63mm		35
	28		100				155 15.00		J.	
	20		94				Grading A	nalysis		
	14		91				D100	mm		0.040
	6.3		89 84	-			D60 D30	mm		0.246
Ī	5		82				D30	mm mm		
	3.35		78				Uniformity			
Ī	2		75				Curvature (
	1.18		72							
	0.6		68				Remarks Preparation an	d testing in accordance with BS	1377 unless no	ted helow
	0.425		67 63	-			i reparation an	a leading in accordance with bo	1377 UIIIESS 1101	aca below
	0.212		57							
	0.15		51							
	0.063		35							
	Operator		Checked	ı	Approved			Sheet printed		1
					Dympna Darcy E	3.Sc.	10	/09/2019 15:47		QC From No:R2
			1							

		DRI.			DAD	TIOL	E 017E	DIOT		UTION		Job Ref		2	2019C106
IRIG	5 ¹	DRILL	200		PAR	HCL	E SIZE	DIST	KIB	UIION		Borehole/Pi	t No.	E	3P3-TP03
s	ite Na	me		Coom W	ind Fari	m						Sample No.			3
s	oil Des	scription	1	Reddish-b	orown sliç	ghtly gra	avelly sand	y CLA`	Y.			Depth, m			1.40
	pecim eferen						Specimen Depth				m	Sample Typ	е		В
Т	est Me	ethod		BS1377:P	art 2:199	90, clau	se 9.2	·				KeyLAB ID		IDL1	20190627697
	-	CLAY	Fin	SIL e Med		coarse	Fine	SAI		Coarse	Fine	GRAVEL Medium C	Coarse	COBBLES	BOULDERS
	100														
	90														
	80														
%	70							1							
Percentage Passing	60														
tage P	50														
ercent	40														
	30														
	20														
	10														
	0 0.0	001		0.0	1		0.1	14 4	Dowtie	1 cle Size		10		100	1000
									Parii	ie Size	mm				
			Sie	ving			Sedimer	itation			Dry M	lass of sampl			851
	P	article S mm	Size	% Pas	sing		le Size nm	% Pa	assing	3			c, g		001
											Sample Pr Very coars			9	6 dry mass 0
		75		100)						Gravel				22
		63		100							Sand				41
	\vdash	50 37.5		100 100						_	Fines <0.0	63mm			38
	H	28		100			-			\dashv	55 <0.00				
		20		97							Grading A	nalysis			
	-	14		94						_	D100		mm		0.054
	\vdash	10 6.3		91 86						\dashv	D60 D30		mm mm		0.251
		5		84			+			\dashv	D10		mm		
		3.35		81							Uniformity	Coefficient			
		2		78							Curvature (Coefficient			
	<u> </u>	1.18		76						_	Domeste				
	-	0.6 0.425		73 72							Remarks Preparation an	d testing in accorda	ince with BS1	1377 unless	noted below
		0.423		69						\dashv	, an			20001	
		0.212		52											
		0.15		41											
		0.063		38											
	Ор	perator		Ch	ecked		Appro	ved	\top		;	Sheet printed			1
						Dy	ympna Dar	cy B.S	c.		10	/09/2019 15:47	,		QC From No:R2
) Old Calve											~

		DRI.			D .	NDTIO	LE SIZE	DIO	TDIE	VIITION		Job Ref		2	2019C106
IRIC	, M	DRILL	200		Ρ/	ARTIC	LE SIZE	פוט	IKIE	SUTION		Borehole	/Pit No.	ŀ	BP3-TP03
s	ite Na	me		Coom	n Wind F	arm						Sample N	No.		4
s	oil Des	scriptior	1	Reddis	sh-brown	slightly	gravelly san	dy CL	AY.			Depth, m	l		2.60
	pecim eferen						Specimen Depth	l			m	Sample 7	Гуре		В
Т	est Me	ethod		BS137	77:Part 2:	1990, cl	ause 9.2					KeyLAB	ID	IDL ²	120190627698
	_	CLAY	Fin	e	SILT Medium	Coarse	Fine		SAND	Coarse	Fine	GRAVEL Medium	Coarse	COBBLES	BOULDERS
	100														
	90														
	80														
%	70														
Percentage Passing	60														
age Pa	50														
ercent	40														
△	30														
	20														
	10														
	0.0	001			0.01		0.1	<u> </u>		1		10	<u>i ! i !! </u>	100	1000
									Part	icle Size	mm				
			Sie	ving			Sedime	ntatio	on .	_					
	Pa	article S mm			Passing	Par	ticle Size		Passir	ng	Dry IV	lass of san	nple, g		944
											Sample Pr			9	6 dry mass
		75			100	+					Gravel	<u> </u>			22
		63			100						Sand				40
	-	50 37.5			100						Fines < 0.06	63mm			39
	\vdash	28			91	+					FINES <0.00	OSHIIII		<u> </u>	Ja
		20			91						Grading A	nalysis			
		14			91						D100		mm		
	\vdash	10 6.3			89 86						D60 D30		mm		0.185
	-	6.3 5		<u> </u>	86					\longrightarrow	D30		mm mm	-	
		3.35			81	+					Uniformity	Coefficient	111111	1	
		2			78						Curvature (
		1.18			76										
		0.6			73	4					Remarks	ud toeting in	ordanas ···it· DO	1277	noted holow
	-	0.425			72 69	-					rieparation an	d testing in acco	nuance with BS	13// Unless	notea below
	\vdash	0.3			63	\dashv									
		0.15			56	1									
		0.063			39										
	On	erator		 	Checked	_ 	Appro	oved		_	;	Sheet printe	d		
$\ \cdot\ $	- 15						Dympna Da		.Sc.		10	/09/2019 15	:47		1
							roo Co Colu								QC From No:R2

	De.		_						Job Ref	20	019C106
' IRL	DRILL	300	P/	ARTIC	LE SIZE DIS	STRIBU	TION		Borehole/Pit No.	В	P3-TP03
s	ite Name		Coom Wind F	arm					Sample No.		6
S	oil Descriptio	n	Reddish-brown	slightly	gravelly sandy C	LAY.			Depth, m		3.30
	pecimen eference				Specimen Depth			m	Sample Type		В
Т	est Method		BS1377:Part 2	1990, cl	ause 9.2				KeyLAB ID	IDL12	0190627700
	CLAY	-	SILT	-		SAND			GRAVEL	COBBLES	BOULDERS
	100	Fin	ne Medium	Coarse	e Fine N	/ledium	Coarse	Fine	Medium Coarse		
	90										
	80										
	70										
% gui	60										
Percentage Passing	50										
entage	40										
Perce	30										
	20										
	10										
	0										
	0.001		0.01		0.1	Particle	1 e Size	mm	10	100	1000
							_				
	Particle \$	Size	wing % Passing	Par	Sedimentati rticle Size	on Passing	-	Dry M	lass of sample, g		799
	mm		, c : accg		mm ^			Sample Pr	oportions	%	dry mass
	75		100					Very coarse	е		0
	75 63		100 100	+			\dashv	Gravel Sand			13 45
	50		100				╡ !				
	37.5 28		100 100	+			-	Fines < 0.06	63mm	ļ	42
	20		100	+	 		┨ :	Grading A	nalysis		
	14		100					D100	mm		
	10		98	-			4	D60	mm		0.171
	6.3		94 92				\dashv	D30 D10	mm mm	-	
	3.35		90	1			\dashv	Uniformity (
	2		87					Curvature (
	1.18		84	-			4	Remarks			
	0.6 0.425	5	82 80						d testing in accordance with BS	1377 unless no	ted below
	0.420	-	77				1		-		
	0.212		67								
	0.15		56	4							
	0.063)	42								
	Operator		Checke	d	Approved			5	Sheet printed		1
					Dympna Darcy E	3.Sc.		10/	/09/2019 15:47		QC From No:R2

	1	DR _I ,			D .	N D TI O	0.7.	DIO	TDIE	NITION		Job Ref	2	2019C106
IRIG	5 ⁵	DRILL	200		PA	ARTIC	LE SIZE	2וט	IKIE	SUTION		Borehole/Pit No.		TP-T13
s	ite Naı	me		Coom	Wind F	arm						Sample No.		2
s	oil Des	scription	1	Brown	very silty	y very sa	ndy mediun	n and	fine G	RAVEL.		Depth, m		1.00
	pecim eferen						Specimer Depth	ı			m	Sample Type		В
Т	est Me	ethod		BS137	7:Part 2:	1990, cl	ause 9.2					KeyLAB ID	IDL1	20190627702
	-	CLAY	Fin		SILT Medium	Coarse	Fine		SAND edium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100				viedium	Coarse	Fille	IVI	edium	Coarse	Fine	Medium Coalse		i
	90		\perp											
	80													
%	70													
ssing	60		+											
Percentage Passing	50													
rcenta	40													
Pe	30													
	20													
	10													
	0.0	001			0.01		0.1	<u>l</u>	<u> </u>	1		10	100	1000
									Part	icle Size	mm			
			Sia	ving		ı	Sedime	ntatio	\n					
	Pa	article S mm			Passing	Par	ticle Size		Passir	ng	Dry M	lass of sample, g		787
		111111									Sample Pr		9/	6 dry mass
	-	75			100	+					Gravel	<u> </u>	+	46
		63			100						Sand			29
		50			100]				05
	-	37.5 28			100	+					Fines <0.06	osimm		25
		20			97	\top				\dashv	Grading A	nalysis		
		14			87						D100	mm		
		10			82	_					D60	mm	_	3.23
	-	6.3		<u> </u>	72 67					—	D30 D10	mm		0.107
	\vdash	3.35			60	+					Uniformity	m Coefficient		
		2		t	54	\top					Curvature (1	
		1.18			49									
		0.6			44						Remarks			
		0.425			42	1					Preparation an	d testing in accordance with E	3S1377 unless r	noted below
	<u> </u>	0.3			39	4								
	-	0.212		-	36	-								
	-	0.15			33 25									
		0.003		!	20									
	Ор	erator			Checked	d	Appr	oved			\$	Sheet printed		1
							Dympna Da	arcy B.	.Sc.		10	/09/2019 15:47		QC From No:R2
				•			roa Co Calv							

Sale Name		I.)n-								Job Ref	2	019C106
Site Name	IRLE	N. M.	MILING		PA	RTIC	LE SIZE	DISTI	RIBUTION		Borehole/Pit No.		TP-T20
Specimen Reference Refer	Si			一	Coom Wind F	arm					Sample No.		1
Test Method BS1377.Part 2:1990, clause 9,2 ReyLAB ID IDL120190027704	So	oil Desc	cription		Reddish-brown	very gra	velly very sil	ty SANE).		Depth, m		0.20
CLAY Fine Silt SAND GRAVEL CODRALES BOULDERS										m	Sample Type		В
CUAI Fine Meditum Coarse Fine Me	Te	est Met	hod		BS1377:Part 2:	1990, cla	ause 9.2				KeyLAB ID	IDL12	20190627704
No. No.		_	CLAY	Fine		Coarse	Fine	_		Fine		COBBLES	BOULDERS
Sieving		100											·
Seving Sedimentation Particle Size mm		90	_										
Sieving		80	-										
Sieving	%	70											
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 628	Issing	60	+										
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 628	age Pa	50	+										
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 628	rcenta	40	+										
Sieving	Pe	30	+										
Sieving		20	+										
Sieving Sedimentation Particle Size Pa		10	+										
Sieving			01		0.01		0.1		1		10	100	1000
Particle Size mm								I	Particle Size	mm			
Particle Size mm						П							
Sample Proportions % dry mass		Pa	rticle Size	_			icle Size		ssing	Dry M	lass of sample, g		628
To To To To To To To To			mm				mm					%	
Sand 41			75		100	-					9		
Sheet printed Sheet printe													
28				J		4				Fines 0.00		<u> </u>	22
Carading Analysis D100 mm D60 mm		-		\dashv		╂				rines <0.06	DOMIN	ļ	ა ა
14				┪		1				Grading A	nalysis		
D30 mm											mm		
D10 mm				4		-						 	0.411
3.35		-		\dashv		╂						+	
2				\dashv		1						†	
0.6 64 0.425 61 0.3 54 0.212 47 0.15 41 0.063 33 Sheet printed 10/09/2019 15:47			2		74								
0.425 61 0.3 54 0.212 47 0.15 41 0.063 33 Preparation and testing in accordance with BS1377 unless noted below Sheet printed 10/09/2019 15:47				J									
0.3 54 0.212 47 0.15 41 0.063 33 Operator Checked Approved Sheet printed 10/09/2019 15:47				\dashv		4					d testing in accordance with Di	\$1377 unloco =:	oted below
0.212 47 0.15 41 0.063 33 Operator Checked Approved Sheet printed 10/09/2019 15:47		-		\dashv		1				r reparation and	u testing in accordance with B	JIJII UIIIESS NO	oled DEIOW
0.15 41 0.063 33 Operator Checked Approved Sheet printed 10/09/2019 15:47				\dashv		1							
Operator Checked Approved Sheet printed 10/09/2019 15:47				力	41	_							
Operator Checked Approved 1 Operator Checked Approved 10/09/2019 15:47			0.063		33	1							
I I I I I I I I I I I I I I I I I I I		Оре	erator		Checked	ı	Appro	ved		5	Sheet printed		1
QO TIONI NO.1(2							Dympna Dai	cy B.Sc		10/	/09/2019 15:47		QC From No:R2

Site Name	Г	1										Job Ref		20	019C106
Site Name	IRIO	140	DRILL	20	PA	RTICI	LE SIZE	DISTRI	BUTIO	ON					
Specimen Reference Specimen Depth Rample Type B Reference Refe	S	ite Na		D	Coom Wind F	arm						Sample	No.		1
Reference	s	oil De	escription	1	Yellowish-brown	slightly	gravelly ve	ry silty fine	and me	dium SAN	ND.	Depth, i	m		0.50
Test Method BS1377:Part 2:1990; clause 9.2 ReyLAB ID IDL120190627707											m	Sample	Туре		В
Sieving					BS1377:Part 2:	1990, cla	-					KeyLAE	3 ID	IDL12	20190627707
100		-	CLAY											COBBLES	BOULDERS
Sieving Sedimentation Particle Size mm		100		Fin	e Medium	Coarse	Fine	Medium	Coa	rse	Fine	Medium	Coarse		
Sieving		90													
Sieving Sedimentation Particle Size mm		80													
Sieving Sedimentation Particle Size mm	%	70													
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 765		60													
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 765	ge Pa	50	\parallel					/							
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 765	rcenta	40	H												
Sieving	Pe	30	H												
Sieving		20													
Sieving Sedimentation Particle Size mm Sieving Particle Size mm Particle Size		10													
Sieving			.001		0.01		0.1		1		<u> </u>	10		100	1000
Particle Size mm								Pa	rticle Siz	e mm					
Particle Size mm				Sie	vina	11	Sedime	ntation	_						
Sample Proportions		F					icle Size		ing		Dry M	lass of sa	mple, g		765
Gravel 5 Sand 63														%	
Society										Grav	/el	-			5
28						╂				San	<u>d</u>				63
Column			37.5		100	1				Fine	s <0.06	63mm			32
14		-				+				Grad	ding A	nalysis			
D30 mm			14		100	1				D10	0				0.044
D10 mm		\vdash				╂			\dashv					1	0.214
2 95			5		98					D10			mm		
1.18						↓									
O.6 90 Remarks Preparation and testing in accordance with BS1377 unless noted below O.3 71 O.212 60 O.15 49 O.063 32 Sheet printed Operator Checked Approved Approved Operator Operato		\vdash				╫─			-+	Curv	ature (Juerricient		I .	
0.3 71 0.212 60 0.15 49 0.063 32 Sheet printed 10/09/2019 15:47						1			\dashv	Rem	arks				
0.212 60 0.15 49 0.063 32 Operator Checked Approved Sheet printed 10/09/2019 15:47						1				Prepa	ration an	d testing in ac	cordance with BS	31377 unless no	ted below
0.15 49 0.063 32 Operator Checked Approved Sheet printed 1 10/09/2019 15:47		\vdash				-									
Operator Checked Approved Sheet printed 1 Operator Dymona Darcy B Sc						1									
Operator Checked Approved 1 Dympna Darcy B Sc			0.063		32	1									
Dymona Darcy B Sc 10/09/2019 15:47		Ol	perator		Checked		Appro	oved			(Sheet print	ed		1
						ı	Dympna Da	rcy B.Sc.			10	/09/2019 1	5:47		QC From No:R2

	.								Job Ref	20	019C106
IRVe	DRILL	200	P#	ARTIC	LE SIZE DI	STRIBU	TION		Borehole/Pit No.	7	ΓP-T22
s	ite Name		Coom Wind F	arm					Sample No.		2
	oil Descriptior	1	Brown very silty	very sa					Depth, m		1.50
	pecimen eference				Specimen Depth			m	Sample Type		В
T	est Method		BS1377:Part 2:	1990, cl	lause 9.2				KeyLAB ID	IDL12	0190627708
	CLAY	Fin	SILT e Medium	Coarse	e Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100										
	90										
	70										
sing %	60										
Percentage Passing	50										
rcenta	40										
Pe	30										
	20										
	10										
	0.001		0.01		0.1		1	<u> </u>	10	100	1000
						Particle	eSize m	nm			
			ving		Sedimenta	tion		Drv M	ass of sample, g		805
	Particle S mm	Size	% Passing	Par	rticle Size , mm	% Passing] ,				
				-				Sample Pro /ery coarse		%	dry mass 0
	75		100					Gravel			48
	63		100 100				⊣	Sand			31
	50 37.5		100	╂	- 		┥╠	ines <0.06	33mm		21
	28		100								
	20		89				_	Grading Ar			
	14 10		80 75	-				D100 D60	mm		3.95
	6.3		67	+				D30	mm mm		0.215
	5		63					D10	mm		
	3.35		58					Jniformity (
	2		52				4 L	Curvature C	Coefficient		
	1.18 0.6		48 44	+			⊣ ,	Remarks			
	0.425		41	1					d testing in accordance with BS	1377 unless no	ted below
	0.3		37								
	0.212		30	4							
	0.15 0.063		27 21	\dashv							
	Operator		Checked	d	Approve	d		S	Sheet printed		
	•				Dympna Darcy			10/	/09/2019 15:47		QC From No:R2
			<u> </u>								QU I IUIII NU.RZ

	1	DRI.			D.	N D TI O	N E 017E	DIO	TDI	NITION		Job Ref	2	019C106
IRIG	N M	DRILL	200		PA	ARTIC	LE SIZE	2וט	IKIE	SUTION		Borehole/Pit No.		TP-T23
s	ite Na	me		Coon	n Wind F	arm						Sample No.		2
S	oil De	scriptior	1	Brown	n very silty	/ SAND	and GRAVE	L.				Depth, m		1.20
	pecim eferer						Specimer Depth	า			m	Sample Type		В
Т	est Me	ethod		BS13	77:Part 2:	1990, c	lause 9.2					KeyLAB ID	IDL1	20190627712
	-	CLAY	Fin		SILT Medium	Coarse	e Fine		SAND	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100				Wedium	Coarse	e Fille	ivi	edidiff	Coarse	Fille	Medium Coarse		.
	90													
	80													
%	70													
ssing	60		+											
Percentage Passing	50													
rcenta	40													
Pe	30													
	20													
	10													
	0 0.0	001			0.01		0.1	<u>li</u>		1		10	100	1000
									Part	icle Size	mm			
			Sia	ving		11	Sedime	ntatio	nn .	_				
	P	article S mm			Passing	Pai	rticle Size		Passir	ng	Dry M	lass of sample, g		907
											Sample Pr		%	dry mass
		75			100						Very coarse Gravel	e	 	39
		63			100						Sand		†	40
		50			100									
	<u> </u>	37.5			100						Fines <0.06	63mm	ļ	20
	-	28 20			96 90						Grading A	nalysis	1	
		14			84					-	D100	mm	1	
		10			78						D60	mm	<u>L</u>	1.81
		6.3			73						D30	mm		0.166
		5			70						D10	mm Coofficient		
	-	3.35		-	66 61					_	Uniformity Curvature (1	
		1.18		 	57	\dashv					Survature (Comodit	1	
		0.6			53						Remarks			
		0.425			51						Preparation an	d testing in accordance with BS	S1377 unless n	oted below
	<u> </u>	0.3			45									
	-	0.212 0.15		-	35 28									
	-	0.15			20									
		2.200												
	Ор	erator			Checked	d	Appr	oved			;	Sheet printed		1
							Dympna Da	arcy B	.Sc.		10	/09/2019 15:47		QC From No:R2
							roo Co Colu							

	1	DRI,			D .	N D TIO	N E 0175	. DIO	TD11) LITIC			Job Ref			2019C106
IRVE	N M	DRILL	200		Ρ/	ARTIC	LE SIZE	: DIS	IKI	BUTIC	N N		Borehole	/Pit No.		TP-T23
s	ite Na	me		Coom	n Wind F	arm							Sample I	No.		4
s	oil Des	scription	1	Reddis	sh-brown	slightly	gravelly sa	ndy CL	_AY.				Depth, m	1		3.20
	pecim eferen						Specimen m			Sample ⁻	Гуре		В			
Т	est Me	ethod		BS137	77:Part 2:	1990, cl	90, clause 9.2			KeyLAB	ID	IDL	120190627714			
	-	CLAY	Fin	e	SILT Medium	Coarse	e Fine		SAND ledium	Coar	se	Fine	GRAVEL Medium	Coarse	COBBLES	BOULDERS
	100															
	90										+					
	80															
%	70		+								+					
Percentage Passing	60		+					1			+					
ige Pa	50							\nearrow			+					
rcenta	40										+					
Pe	30										+					
	20										+					
	10										+					
	0.0	001			0.01		0.1			1			10		100	1000
									Par	ticle Siz	e mr	n				
	-					П										
	P	article S		ving	Passing	Par	Sedimentation Particle Size				Dry M	Dry Mass of sample, g			1044	
		mm		,,,			mm	,,,		.9	Sa	ample Pr	oportions		9	% dry mass
		75			100							ery coarse	е			23
		63			100						_	and				36
		50			100											
		37.5			100	4					Fi	nes <0.06	63mm			41
		28			100 97						G	rading Aı	nalvsis		l	
	\vdash	14			97							100	,010	mm		
		10			93						D	60		mm		0.298
		6.3			88						D:			mm		
	-	5 3.35			85 81					-		10 niformity (Coefficient	mm		
		2		 	77	\dashv				\dashv			Coefficient		 	
		1.18		L	73								· · · · · · · · · · · · · · · · · · ·			
		0.6			70							emarks				
	<u> </u>	0.425			68						Pre	eparation and	d testing in acco	ordance with BS	1377 unless	noted below
	-	0.3			60 51											
	-	0.212			47											
		0.063		<u> </u>	41											
	On	erator			Checked		Ann	roved				5	Sheet printe	d		<u> </u>
$\ \cdot\ $	<u> </u>	.514101			C. IOUNG	-	Dympna D		Sc			10	/09/2019 15	:47		1
							Dylliplia D									QC From No:R2

DRILL		Californ	ia Beari	na Rat	io (CBR	1	Job Ref	2019C106
DRILLING	2					,	Borehole/Pit No.	TP-T20
Site Name	Coom Wine	d Farm					Sample No.	1
Soil Description	Reddish-br	rown very gra	avelly very s	silty SANE).		Depth m	0.20
Specimen Reference			Specimer Depth	n		m	Sample Type	В
Specimen Description	+						KeyLAB ID	IDL120190627704
Test Method	BS1377 : F	Part 4 : 1990	, clause 7				CBR Test Number	1
pecimen Preparati	on .							
Condition		OULDED					Soaking details	Not soaked
Details			h specified	standard	effort using 2	2.5kg	Period of soaking	days
	ramn	1er					Time to surface Amount of swell recor	days rded mm
Material r	etained on 20	Omm sieve r	emoved			%	Dry density after soak	
Initial Spe	ecimen details		density ensity		1.98 1.58	Mg/m3 Mg/m3	Surcharge applied	2 kg 1 kPa
		-	ure content		25.7	wig/ms %		ι κια
0.08			Force	v Penetra	ation Plots			-
0.07		-	+	+	-+			
							/	
0.06		+-	+	\top			\ 	. Ton data
z 0.05					·	/	<u></u>	─ × ─ Top data
×					7	7		* Top values
<u>*</u>					/*	*		—— Top correction
Police Applied 6 0.04			ــر ہــ	* * *				Base data
Ō 0.03				+	-+			• Base values
*		*	* #					—— Base Correctio
0.02	<i>p</i>	 /	+					
0.01	$/\!\!\!\!/$			\perp				
0.01	_ / 				_			
0.00	<u>/ </u>	į						
0	1	2	3 P	4 enetration	5 n mm	6	7 8	8
Results		Curve		CBR	Values, %		Moisture	
		correction	2.5mm	5mm	Highest	Average	Content	
T 0	_	applied				Average	%	
TO! BAS			0.2	0.2	0.2	0.2	24.4	
					ļ		.	
General remark	.S		Test specifi	c remark	3	Appr	roved	Fig No. 1 QC From R9
			i			Г	OCD (10.09.19)	Sheet No 1

Y	DRILL		Californ	ia Beari	na Rat	io (CBR	١	Job Ref	2019C106
IR'S	DRILLING					10 (35	,	Borehole/Pit No.	TP-T22
Site N	Name	Coom Wind	d Farm					Sample No.	2
Soil [Description	Brown very	silty very sa	andy GRAV	EL.			Depth m	1.50
	cimen rence			Specimer Depth	n		m	Sample Type	В
Spec	cimen cription			•				KeyLAB ID	IDL120190627708
	Method	BS1377 : P	Part 4 : 1990,	, clause 7				CBR Test Number	1
oecin	men Preparatio	on							
	Condition		OULDED					Soaking details	Not soaked
	Details			h specified	standard	effort using 2	<u>²</u> .5kg	Period of soaking	days
		ramm	ier					Time to surface Amount of swell reco	days
	Material re	etained on 20)mm sieve re	emoved			%	Amount of swell reco	
		tamos 5		7110.00			,0	Diy doi.o.,	
	Initial Spe	cimen details		density		1.80	Mg/m3	Surcharge applied	2 kg
				lensity		1.61	Mg/m3		1 kPa
			Moist	ure content		11.8	%		
				Force	v Penetr	ation Plots			
	0.60		$\overline{}$			$\overline{}$	$\overline{}$		٦
	0.50		\neg						1
	0.40				-				─ × ─ Top data
조	* ·								* Top values
ljed			[•		—— Top correction
Force Applied	0.30					× o o	$\overline{}$		† · · · · ·
orce									— Base data
й	0.20								• Base values
	0.20								Base Correction
	0.10			+	-+	-+	-+		-
	ير								
						1			
	0.00	1	2	3	4	5	6	7	8
				P	enetration	ı mm			
R	Results		Curve	<u> </u>	CBR	Values, %		Moisture	
			correction applied	2.5mm	5mm	Highest	Average	Content	
	TOP	,	~FF	1.3	1.8	1.8	+	% 11.7	
	BAS			1.2	1.6	1.6	1.7	13.3	
_		L	<u> </u>			Į.		-	·
L	General remarks	3		Test specifi	ic remark	<u>S</u>	Appı	roved	Fig No. 1 QC From R9
1			J	1			l r	OCD (10.09.19)	Sheet No 2

DRILL		Californ	ia Beari	na Rati	o (CBR	١	Job	o Ref	2019C106
DRILL	45			<u></u>	U (OD	<i>,</i>	Bor	rehole/Pit No.	TP-T23
Site Name	Coom Wine	d Farm					Sar	mple No.	4
Soil Description	Reddish-br	rown slightly	gravelly sar	ndy CLAY.			De	pth m	3.20
Specimen Reference			Specimer Depth	n		m	Sar	mple Type	В
Specimen Description				•			Ke	yLAB ID	IDL120190627714
Test Method	BS1377 : F	Part 4 : 1990	, clause 7				СВ	R Test Number	1
pecimen Prepara	tion								
Conditio		OULDED					Soak	king details	Not soaked
Details	Reco	ompacted wit	th specified	standard e	offort using 2	2.5kg	Perio	od of soaking	days
	Ium.	ilei						to surface unt of swell record	days ded mm
Material	retained on 20	Omm sieve re	emoved			%		density after soaki	
Initial St	pecimen details	- Rulk	density		2.20	Mg/m3	Surch	harge applied	2 ka
liilliai O _F	ecimen uetano		density lensity		2.20 1.95	Mg/m3 Mg/m3	Suici	narge applied	2 kg 1 kPa
		-	ture content		13.0	%			
			Force	v Penetra	ition Plots				
0.45				V 1 5		$\overline{}$			
0.40								<u></u>	
0.40									
0.35			+	-		-+	-		
0.30						- Mary	<u></u>		─× Top data
₹ 0.30									* Top values
		+-	+	 		-+		+	Top correction
0.25 - O.20 - O.				X					Base data
0.20			-	~					• Base values
0.15				+	+			+	
0.10									Base Correction
0.10		→							
0.05		+	+	+	+	-+		+	
0.00				\perp					
0.00	1	2	3 P	4 enetration	5 mm	6		7 8	i
Results		O:::::10			/alues, %		٦	Moisture	
Noouno		Curve correction	2.5mm		Highest	Average		Content	
		applied		5mm		Average	_ '	%	
TC BA	OP NSE		1.0 1.3	1.4 1.4	1.4	1.4		13.4	
					!		 al		Telebia 4
General rema	ks		Test specifi	.c remarks			oroved		Fig No. 1 QC From R9
		J	1			1	DCD (1	0.09.19)	Sheet No 3

	Moisture Condition Value / Moisture Content		Job Ref	2019C106
	Relation	onship	Borehole/Pit No.	BP1-TP01
Site Name	Coom Wind Farm		Sample No.	2
Soil Description	Brown silty sandy medium and coa	se GRAVEL.	Depth	1.5
Specimen Reference	Specime Depth	m m	Sample Type	В
Specimen Description			KeyLAB ID	IDL120190627669
Test Method	BS1377:Part4:1990:clause 5.5		Date started	20/08/2019

Amount of material larger than 20mm sieve removed

9 % 19 %

Natural Moisture Content of sample Initial Moisture Content of test sample below 20mm

12.6 %

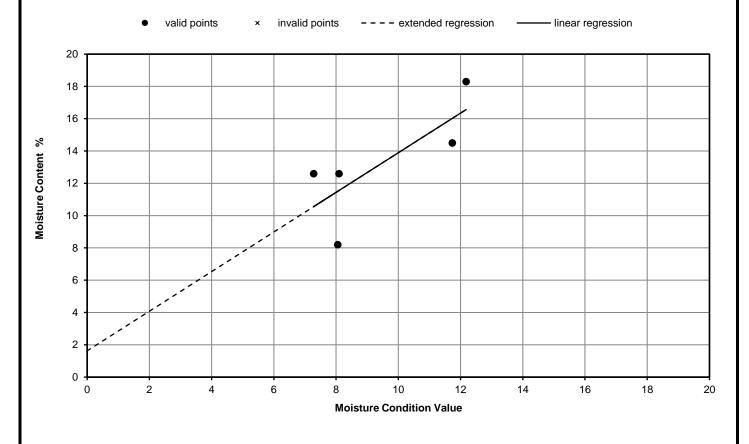
Composite of fresh and reused material tested

General remarks

Table of results

MCV Test Number

Moisture Content, %


Moisture Condition Value

MCV report

Effective / Valid data point

Specimen remarks

1	2	3	4	5
12.6	8.2	12.6	14.5	18.3
8.1	8.1	7.3	11.7	12.2
8.1	8.1	7.3	11.7	12.2
YES	YES	YES	YES	YES

Lab Sheet Reference : QC Form R7

 Tested
 Checked
 Approved

 RG
 DCD
 DCD (10.09.19)

	Moisture Condition Value /	Moisture Condition Value / Moisture Content Relationship		2019C106
	Relationsh			BP2-TP01
Site Name	Coom Wind Farm		Sample No.	2
Soil Description	Reddish-brown sandy silty medium and o	coarse GRAVEL.	Depth	1.8
Specimen Reference	Specimen Depth	m	Sample Type	В
Specimen Description	·		KeyLAB ID	IDL120190627677
Test Method	BS1377:Part4:1990:clause 5.5		Date started	20/08/2019

Amount of material larger than 20mm sieve removed 25 % Natural Moisture Content of sample 15 % Initial Moisture Content of test sample below 20mm 18 %

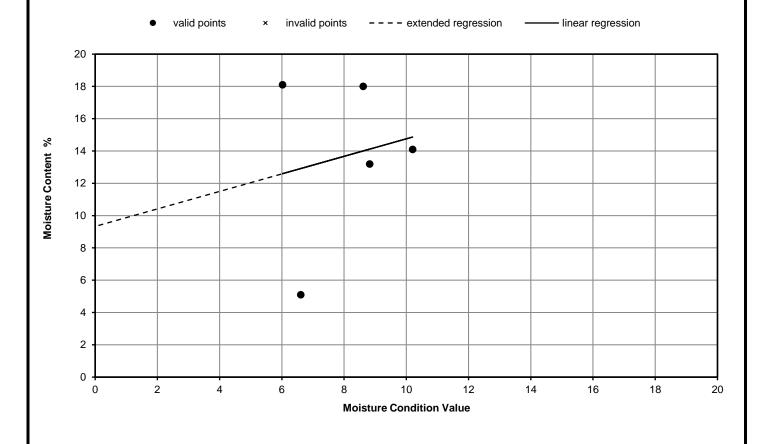
Composite of fresh and reused material tested

General remarks

Table of results

MCV Test Number

Moisture Content, %


Moisture Condition Value

MCV report

Effective / Valid data point

Specimen remarks

1	2	3	4	5
18.0	14.1	18.1	13.2	5.1
8.6	10.2	6.0	8.8	6.6
8.6	10.2	6	8.8	6.6
YES	YES	YES	YES	YES

 Tested
 Checked
 Approved

 RG
 DCD
 DCD (10.09.19)

 Lab Sheet Reference : QC Form R7
 DCD (10.09.19)

	Moisture Condition Va	Moisture Condition Value / Moisture Content		2019C106
	Relation	nship	Borehole/Pit No.	BP2-TP03
Site Name	Coom Wind Farm		Sample No.	1
Soil Description	Brown very silty very sandy medium	and fine GRAVEL.	Depth	0.5
Specimen Reference	Specimer Depth	m	Sample Type	В
Specimen Description			KeyLAB ID	IDL120190627682
Test Method	BS1377:Part4:1990:clause 5.5		Date started	20/08/2019

Amount of material larger than 20mm sieve removed

5 % 17 %

Natural Moisture Content of sample

17 % 18.9 %

Initial Moisture Content of test sample below 20mm

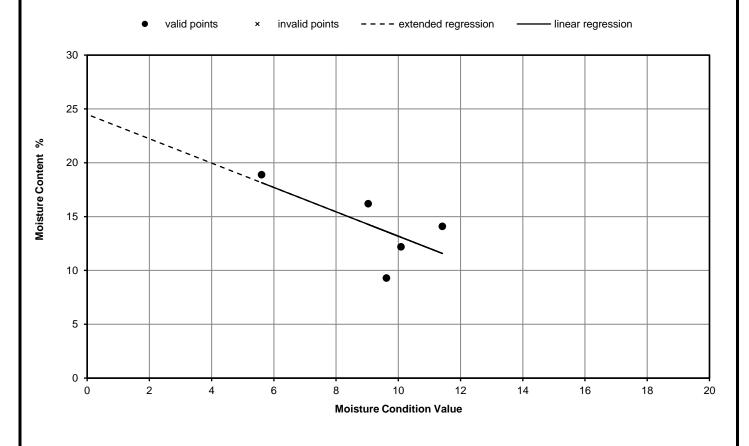
Composite of fresh and reused material tested

General remarks

Table of results

MCV Test Number

Moisture Content, %


Moisture Condition Value

MCV report

Effective / Valid data point

Specimen remarks

1	2	3	4	5
18.9	14.1	16.2	12.2	9.3
5.6	11.4	9.0	10.1	9.6
5.6	11.4	9	10.1	9.6
YES	YES	YES	YES	YES

 Tested
 Checked
 Approved

 RG
 DCD
 DCD (10.09.19)

Lab Sheet Reference : QC Form R7

	Moisture Condition Valu	Condition Value / Moisture Content Relationship		2019C106
	Relation			BP3-TP01
Site Name	Coom Wind Farm		Sample No.	1
Soil Description	Brown slightly gravelly sandy CLAY.		Depth	0.7
Specimen Reference	Specimen Depth	m	Sample Type	В
Specimen Description			KeyLAB ID	IDL120190627689
Test Method	BS1377:Part4:1990:clause 5.5		Date started	20/08/2019

Amount of material larger than 20mm sieve removed

26 %

3

Natural Moisture Content of sample Initial Moisture Content of test sample below 20mm

29.8 %

%

Composite of fresh and reused material tested

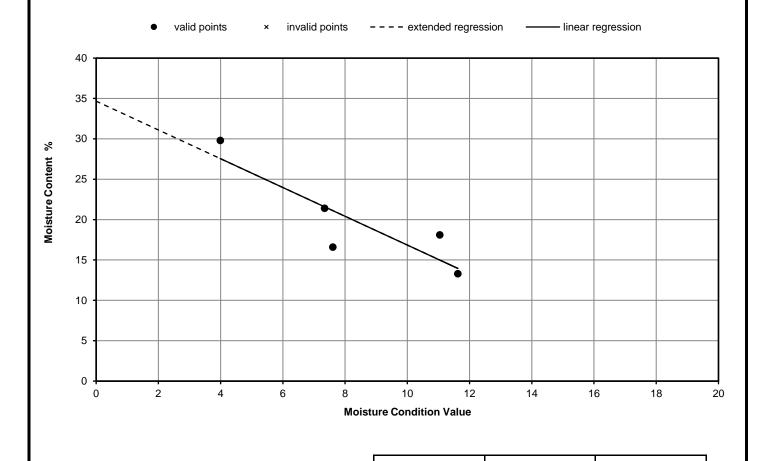
General remarks

Table of results

MCV Test Number

Moisture Content, %

Moisture Condition Value


MCV report

Effective / Valid data point

Specimen remarks

Lab Sheet Reference : QC Form R7

1	2	3	4	5
29.8	21.4	16.6	13.3	18.1
4.0	7.3	7.6	11.6	11.0
4	7.3	7.6	11.6	11
YES	YES	YES	YES	YES

Tested

RG

Checked

DCD

Approved

DCD (10.09.19)

	Moisture Condition Value	Job Ref	2019C106	
	Relationsl	nip	Borehole/Pit No.	BP3-TP03
Site Name	Coom Wind Farm		Sample No.	3
Soil Description	Reddish-brown slightly gravelly sandy C	LAY.	Depth	1.4
Specimen Reference	Specimen Depth	m	Sample Type	В
Specimen Description			KeyLAB ID	IDL120190627697
Test Method	BS1377:Part4:1990:clause 5.5		Date started	21/08/2019

Amount of material larger than 20mm sieve removed

3 %

Natural Moisture Content of sample

11 %

Initial Moisture Content of test sample below 20mm

12.2

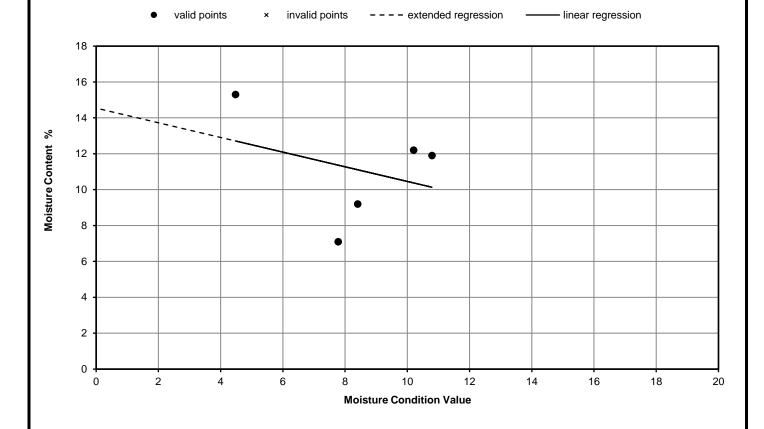
Composite of fresh and reused material tested

General remarks

Table of results

MCV Test Number

Moisture Content, %


Moisture Condition Value

MCV report

Effective / Valid data point

Specimen remarks

1	2	3	4	5
12.2	15.3	9.2	11.9	7.1
10.2	4.5	8.4	10.8	7.8
10.2	4.5	8.4	10.8	7.8
YES	YES	YES	YES	YES

 Tested
 Checked
 Approved

 RG
 DCD
 DCD (10.09.19)

Lab Sheet Reference : QC Form R7

	Moisture Condition Value /	Moisture Content	Job Ref	2019C106
	Relationsh	iip	Borehole/Pit No.	TP-T13
Site Name	Coom Wind Farm		Sample No.	2
Soil Description	Brown very silty very sandy medium and	fine GRAVEL.	Depth	1
Specimen Reference	Specimen Depth	m	Sample Type	В
Specimen Description			KeyLAB ID	IDL120190627702
Test Method	BS1377:Part4:1990:clause 5.5		Date started	21/08/2019

Amount of material larger than 20mm sieve removed 3
Natural Moisture Content of sample 13

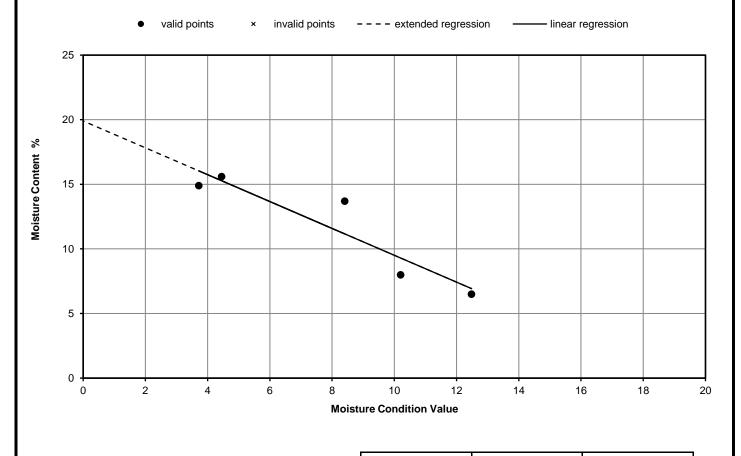
Initial Moisture Content of test sample below 20mm Composite of fresh and reused material tested

General remarks

Table of results

MCV Test Number

Moisture Content, %


Moisture Condition Value

MCV report

Effective / Valid data point

Specimen remarks

1	2	3	4	5
13.7	14.9	15.6	8.0	6.5
8.4	3.7	4.5	10.2	12.5
8.4	3.7	4.5	10.2	12.5
YES	YES	YES	YES	YES

Lab Sheet Reference : QC Form R7

% %

13.7

	Moisture Condition Value	Moisture Content	Job Ref	2019C106
	Relationsh	nip	Borehole/Pit No.	TP-T20
Site Name	Coom Wind Farm		Sample No.	1
Soil Description	Reddish-brown very gravelly very silty SA	AND.	Depth	0.2
Specimen Reference	Specimen Depth	m	Sample Type	В
Specimen Description			KeyLAB ID	IDL120190627704
Test Method	BS1377:Part4:1990:clause 5.5		Date started	25/07/2019

Amount of material larger than 20mm sieve removed

3 %

Natural Moisture Content of sample

23 %

Initial Moisture Content of test sample below 20mm

Composite of fresh and reused material tested

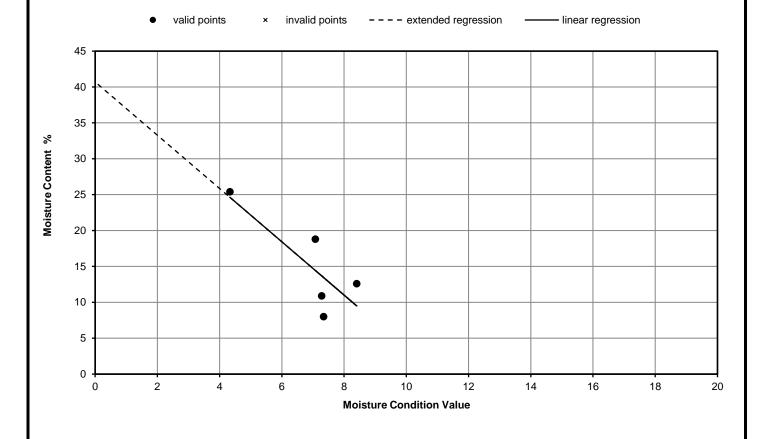
25.4 %

General remarks

Table of results

MCV Test Number

Moisture Content, %


Moisture Condition Value

MCV report

Effective / Valid data point

Specimen remarks

1	2	3	4	5
25.4	12.6	10.9	8.0	18.8
4.3	8.4	7.3	7.3	7.1
4.3	8.4	7.3	7.3	7.1
YES	YES	YES	YES	YES
			_	

Lab Sheet Reference : QC Form R7

 Tested
 Checked
 Approved

 RG
 DCD
 DCD (10.09.19)

	Moisture Condition Value /	Moisture Content	Job Ref	2019C106
	Relationsh	iip	Borehole/Pit No.	TP-T22
Site Name	Coom Wind Farm		Sample No.	1
Soil Description	Yellowish-brown slightly gravelly very silty	y fine and medium SAND.	Depth	0.5
Specimen Reference	Specimen Depth	m	Sample Type	В
Specimen Description			KeyLAB ID	IDL120190627707
Test Method	BS1377:Part4:1990:clause 5.5		Date started	26/07/2019

Amount of material larger than 20mm sieve removed 0 %
Natural Moisture Content of sample 31 %
Initial Moisture Content of test sample below 20mm 29.5 %

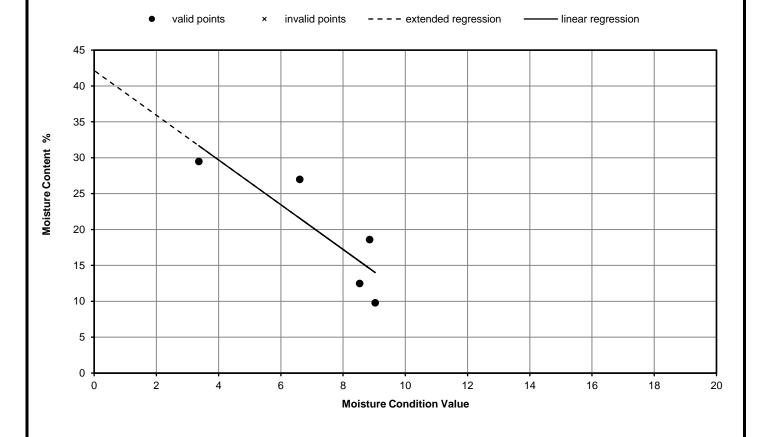
Composite of fresh and reused material tested

General remarks

Table of results

MCV Test Number

Moisture Content, %


Moisture Condition Value

MCV report

Effective / Valid data point

Specimen remarks

1	2	3	4	5
29.5	18.6	12.5	9.8	27.0
3.4	8.9	8.5	9.0	6.6
3.4	8.9	8.5	9	6.6
YES	YES	YES	YES	YES

 Tested
 Checked
 Approved

 RG
 DCD
 DCD (10.09.19)

Manor Road (off Manor Lane) Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com

Website: www.alsenvironmental.co.uk

Unit 7-8 Hawarden Business Park

Hawarden Deeside CH5 3US

Irish Drilling Limited Old Galway Road Loughrea Co. Galway

Attention: Dympna Darcy

CERTIFICATE OF ANALYSIS

Date of report Generation: 05 August 2019 Irish Drilling Limited **Customer:**

Sample Delivery Group (SDG): 190730-36 2019C106 Your Reference: Coom WF Location: 516828 Report No:

We received 9 samples on Tuesday July 30, 2019 and 9 of these samples were scheduled for analysis which was completed on Monday August 05, 2019. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan **Operations Manager**

CERTIFICATE OF ANALYSIS

 SDG:
 190730-36
 Client Reference:
 2019C106
 Report Number:
 516828

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
20424282	BP1-TP01	B1	0.50 - 0.70	19/06/2019
20424288	BP1-TP01	B2	1.50 - 1.70	19/06/2019
20424292	BP2-TP01	B2	1.80 - 2.00	17/06/2019
20424299	BP3-TP01	B1	0.70 - 0.90	18/06/2019
20424306	BP3-TP03	B4	2.60 - 2.80	17/06/2019
20424312	TP-T13	B2	1.00 - 1.20	19/06/2019
20424314	TP-T20	B1	0.20 - 0.40	18/06/2019
20424318	TP-T23	B2	1.20 - 1.40	18/06/2019
20424321	TP-T23	B4	3.20 - 3.40	18/06/2019

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

18.4

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of $(5\pm3)^{\circ}$ C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

CERTIFICATE OF ANALYSIS

ALS

 SDG:
 190730-36
 Client Reference:
 2019C106
 Report Number:
 516828

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Results Legend X Test No Determination	Lab Sample No(s)			20424288	20424292	20424299	20424306	20424312	20424314	20424318	20424321
Possible Sample Types -	Custome Sample Refer	BP1-TP01	BP1-TP01	BP2-TP01	BP3-TP01	BP3-TP03	TP-T13	TP-T20	TP-T23	TP-T23	
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	В1	B2	B2	В1	B4	B2	В1	B2	B4	
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)			1.50 - 1.70	1.80 - 2.00	0.70 - 0.90	2.60 - 2.80	1.00 - 1.20	0.20 - 0.40	1.20 - 1.40	3.20 - 3.40
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	
	Sample Ty	pe	S	S	S	S	S	v	v	v	v
Anions by Kone (soil)	All	NDPs: 0 Tests: 9	Х	Х	Х	Х	Х	Х	X	Х	Х
рН	All	NDPs: 0 Tests: 9	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sample description	All	NDPs: 0 Tests: 9	х	Х	Х	Х	Х	Х	Х	Х	Х
Total Sulphate	All	NDPs: 0 Tests: 9	х	х	х	х	х	х	х	х	x

>10mm

 SDG:
 190730-36
 Client Reference:
 2019C106
 Report Number:
 516828

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Sample Descriptions

Grain Sizes

very fine	<0.0	63mm	fine 0.063mm - 0.1mm medium 0.1mm - 2mm column		coars	e	oarse 2mm - 1		very coars					
Lab Sample	Lab Sample No(s)		Customer Sample Ref. Dep		Depth (m)	Depth (m)		lour	lour Description		Inclusions		Inclu	ısions 2
20424282	2		BP1-TP01		0.50 - 0.70		Dark	Brown	Loamy S	and	Sto	ones	Veç	getation
20424288	3		BP1-TP01		1.50 - 1.70		Dark	Brown	Sandy L	oam	Sto	ones	Veç	getation
20424292	2		BP2-TP01		1.80 - 2.00		Ligh	t Brown	Silty Clay	Loam	Stones		Vegetation	
20424299	9		BP3-TP01		0.70 - 0.90		Light Brown Silty Clay Loam		Loam	Stones		Veç	getation	
20424306	6		BP3-TP03		2.60 - 2.80		Dark Brown		Silty Clay Loam		Silty Clay Loam Stones		Veç	getation
20424312	2		TP-T13		1.00 - 1.20		Dark	Brown	Loamy S	and	Sto	ones	Veç	getation
20424314	4		TP-T20		0.20 - 0.40		Light Brown		Sandy Clay	andy Clay Loam Stones		Veç	getation	
20424318	3		TP-T23		1.20 - 1.40		Dark Brown		Dark Brown Loamy Sar		pamy Sand Stones		Veç	getation
20424321	20424321 TP-T23		3.20 - 3.40		Dark Brown		Sandy Loam		Sandy Loam		Sto	ones	Veç	getation

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

 SDG:
 190730-36
 Client Reference:
 2019C106
 Report Number:
 516828

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Results Legend # ISO17025 accredited.		Customer Sample Ref.	BP1-TP01	BP1-TP01	BP2-TP01	BP3-TP01	BP3-TP03	TP-T13
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50 - 0.70	1.50 - 1.70	1.80 - 2.00	0.70 - 0.90	2.60 - 2.80	1.00 - 1.20
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report	far	Sample Type	Soil/Solid (S)					
accreditation status. ** % recovery of the surrogate standard to chec		Date Sampled Sample Time	19/06/2019	19/06/2019	17/06/2019	18/06/2019	17/06/2019	19/06/2019
efficiency of the method. The results of indivi compounds within samples aren't corrected f	dual	Date Received	30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019
recovery (F) Trigger breach confirmed	or the	SDG Ref	190730-36 20424282	190730-36 20424288	190730-36 20424292	190730-36 20424299	190730-36 20424306	190730-36 20424312
1-3+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	B1	B2	B2	B1	B4	B2
Component Moisture Content Ratio (% of as	LOD/Units	Method PM024	10	9	9.4	17	9.5	9.2
received sample)	/0	FIVIU24	10	9	3.4	"	9.0	9.2
pH	1 pH Units	TM133	5.68	6.62	5.46	7.81	5.46	5.73
			@ M			@ M	@ M	@ M
Sulphate, Total	<48 mg/kg	TM221	<48	<48	<48	<48	<48	<48
Chloride (soluble)	<5 mg/kg	TM243	9.36	14.1	1 M	13.7	8.23	7.5
Official (Soluble)	10 mg/kg	1101243	9.50 @ M			(0 M	0.23 @ M	7.3 @ M
			<u> </u>			Ĭ	Ŭ	<u> </u>
				 	+			
				<u> </u>	<u> </u>			
				-	-			
		+						

CERTIFICATE OF ANALYSIS

 SDG:
 190730-36
 Client Reference:
 2019C106
 Report Number:
 516828

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

() (00)							
Results Legend # ISO17025 accredited.		Customer Sample Ref.	TP-T20	TP-T23	TP-T23		
M mCERTS accredited. aq Aqueous / settled sample.							
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.20 - 0.40 Soil/Solid (S)	1.20 - 1.40 Soil/Solid (S)	3.20 - 3.40 Soil/Solid (S)		
 Subcontracted - refer to subcontractor repor accreditation status. 	t for	Date Sampled	18/06/2019	18/06/2019	18/06/2019		
** % recovery of the surrogate standard to chec efficiency of the method. The results of indiv	ck the	Sample Time Date Received	30/07/2019	30/07/2019	30/07/2019		
compounds within samples aren't corrected recovery	for the	SDG Ref	190730-36	190730-36	190730-36		
(F) Trigger breach confirmed 1-3+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	20424314 B1	20424318 B2	20424321 B4		
Component	LOD/Units	Method					
Moisture Content Ratio (% of as received sample)	%	PM024	16	5.5	12		
pH	1 pH Units	s TM133	7.22	6.35	5.44		
'			@ M	@ M			
Sulphate, Total	<48 mg/kg	g TM221	<48	<48	<48		
011 11 / 111)	.5 ()	T14040	M	M			
Chloride (soluble)	<5 mg/kg	TM243	13.8 @ M	7.19 @ M	7.57 @ M		
			@ ···	<u> </u>	<u> </u>		
							\vdash
						 	<u> </u>
							\vdash
							\vdash
							\vdash

CERTIFICATE OF ANALYSIS

 SDG:
 190730-36
 Client Reference:
 2019C106
 Report Number:
 516828

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Table of Results - Appendix

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM221	Inductively Coupled Plasma - Atomic Emission Spectroscopy. An Atlas of Spectral Information: Winge, Fassel, Peterson and Floyd	Determination of Acid extractable Sulphate in Soils by IRIS Emission Spectrometer
TM243	·	Mixed Anions In Soils By Kone

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

CERTIFICATE OF ANALYSIS

 SDG:
 190730-36
 Client Reference:
 2019C106
 Report Number:
 516828

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Test Completion Dates

			• • • • • • • • • • • • • • • • • • • •	P - O - O -					
Lab Sample No(s)	20424282	20424288	20424292	20424299	20424306	20424312	20424314	20424318	20424321
Customer Sample Ref.	BP1-TP01	BP1-TP01	BP2-TP01	BP3-TP01	BP3-TP03	TP-T13	TP-T20	TP-T23	TP-T23
AGS Ref.	B1	B2	B2	B1	B4	B2	B1	B2	B4
Depth	0.50 - 0.70	1.50 - 1.70	1.80 - 2.00	0.70 - 0.90	2.60 - 2.80	1.00 - 1.20	0.20 - 0.40	1.20 - 1.40	3.20 - 3.40
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Anions by Kone (soil)	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019
pH	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	02-Aug-2019	04-Aug-2019
Sample description	30-Jul-2019	30-Jul-2019	30-Jul-2019	30-Jul-2019	30-Jul-2019	30-Jul-2019	30-Jul-2019	30-Jul-2019	30-Jul-2019
Total Sulphate	05-Aug-2019	05-Aug-2019	05-Aug-2019	05-Aug-2019	05-Aug-2019	05-Aug-2019	05-Aug-2019	05-Aug-2019	05-Aug-2019

CERTIFICATE OF ANALYSIS

 SDG:
 190730-36
 Client Reference:
 2019C106
 Report Number:
 516828

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name		
Chrysof le	White Asbestos		
Amosite	Brown Asbestos		
Cro a dolite	Blue Asbe stos		
Fibrous Actinolite	-		
Fib to us Anthop hyll ite	-		
Fibrous Tremolite	-		

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2107).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

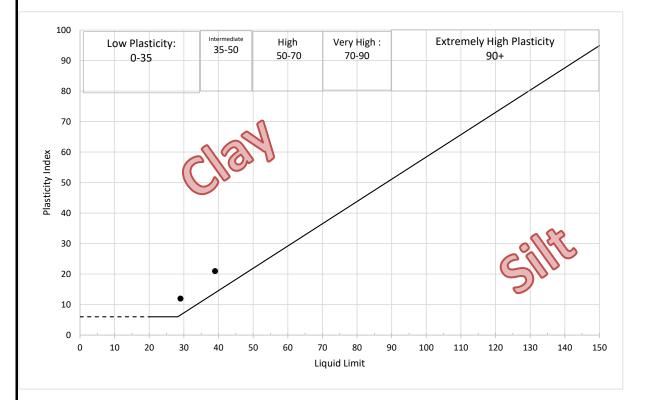
APPENDIX 5

Directors: HERB M. STANLEY, B.Sc., B.A., (Canadian) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., RONAN KILLEEN, B.E., C.Eng., M.I.E.I., (Secretary) Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

Project ID	2019C106	Client Coillte	Remarks	Turnaround	
Project Name	Coom Wind Farm	Due Date 14/10/2019	19 11:14		
Schedule ID	2019C106_2	Scheduled Date 14/10/2019			

																																	hear									
																																	regth ective									
		Samn	le Details					Class	sification	on			Che	mica	I / Cor	crete			C	ompa	ction			Compressibility				Streng	th (Tota	I)			ective ress)		ock	Othe	or					
		Camp	ic Details				hт	Olass					T	I	17 001	iorete			Т.	I				Compressibility		ÌП		Oliving	iii (Tota	.,		0.1	1.0	_	OUN	Our	1			1		
									1																							st	ž Š									
									5	5										<u></u>		.≘										e H	<u></u>	1								
									_ }	2				٥.						l E		us									_	iaxial Test	Triaxial Test	_								
									S Ja	Ē e				hetr						lan lan	e	atic						8			ue.	Ţ.										
									Particle Density by Gas Jar	article Size Distribution				Ν			:	ġ.		Compaction Vibrating Hammer	Aoisture Condition Value	Relationship			Test	t t	ŏ	king shear Test riaxial Quick Undraine	sure)	Stage	riaxial UU Multi Specimen	B	Consolidated Undrained	compressi								
							± 1	.	<u>ا</u>	ig a				Gravi	ion		<u>. :</u>	Ĭ,	<u>.</u> ≥	ati	ou	Condition				te e	art	ğ	SSC		တိ	a.	dra dra	ΙĒ								
			_		σ		teu	Point	₹ ₹	Dis S		tent	<u> </u>	_	trat		tel .	iel ie	ĒĖ	Ιġ	difi	iţ		_	nss	ane	She	Test Ck U	Pres	₹	ĮĦ,	۵	בֿן בֿ	5 8								
	_	£	Type	Ref	Sampled		Content	Α.	eus	ize g	ē	Content	Į į	Water	F		<u>ق</u> ا	<u>ة</u> ا ق	5 6	o	Ö	Ö		<u>ğ</u>	elling Pressure	>	gc	빌	Ce	5		tec	tec	X is	ъ							
5	Œ	Depth	<u>—</u>	Ф Ж	βaπ	Φ.	<u>@</u>	g.		S	uet I	9 9	g l	te	nat		<u>.</u>	g G	寅	gcti	₽	<u>@</u>		<u> </u>	J gc	to	ä	Per Per	≥	12		ig	<u>i</u> g <u>ig</u>	Ë	-oa							
ocation	epth	se	mple	Sample	Date S	Storage	Moisture	Atterberg 4	틸	탈	Hydrome	Organic Content	Sulphate Total	phate	arbonate Titration		Chloride Content	Chloride Content Acid	Compaction Heavy	- lä	istu	Aoisture	œ	Onsolidation	≣	aboratory Vane test	Small Direct Shearbox	Ring shear Friaxial Qui	Specify	riaxial UU Multi	жia	Sonsolidated Drained	osu	Rock Uniaxial	Point Load							
	De	Ba	Sa	Sa]	Stc	≨	Att	Pa	Pa	Î	ő	Su	Sn	Ca	hd	ပ် ပ	ပ် ပိ	3 8	ပိ	§	ջ	CBR	8 Pressures	Š	Lal	Sır	潭 岸	Š	Ë	Ë	ပိ	ပို	Ro	Ро							
RC01	0.00	2.00	С		07/10/19																									_		$oxed{oxed}$										
RC01	2.00	3.20	С		07/10/19																											\sqcup										
RC01	3.20	4.60	С		07/10/19					_	1			-			_				┡				_						-	1	_			_		1				
RC01	4.60 6.10	6.10 7.50	C		07/10/19		+				\vdash		+	1	1	-		-	-						-		\vdash				-	╀		+	1	-	-	-				ALS Ref: 191021-15
RC02	0.00	2.00	C		08/10/19		+			-			+	+-	1	-								-	-		H	_			-	+	-	+'	_	-					-	ALS Rei: 191021-15
RC02	2.00	3.50	C		08/10/19				-				+	-			-											_			1	+										
RC02	3.50	5.00	C		08/10/19		1			1			+				_																									
RC02	5.00	6.50	C		08/10/19																																					
RC02	6.50	8.00	С		08/10/19		1			1																																
RC02	8.00	9.50	С		08/10/19																																					
RC02	9.50	11.00	С		08/10/19																																					
RC02	11.00	12.50	С		08/10/19									1	1															_		$oxed{oxed}$		0*							P	ALS Ref: 191021-15
RC02	12.50	13.60	С		08/10/19		1 1		_	_	\vdash	_	4	-	1		4		-	1	\sqcup				1	+	\sqcup			_	1	\sqcup	_	0*	_1_	<u> </u>	-		Ш			
RC02 RC03	13.60 0.00	14.20 2.00	C	-	08/10/19		++	-	-	-	₩		-	-	1	-+		-	-	+	₩	-+	-	+	-	+	\vdash		1	-	+	₩		-		1	+	-	\vdash			
RC03	2.00	3.50	C		04/10/19		1	1		1	\vdash		+	-	-				-	-	\vdash			-	+	\vdash	\vdash	_	<u> </u>		-		-	-	-	1	+	1				
RC03	3.50	5.00	C		04/10/19		+	-+		+-	\vdash	+	+	+	1	-	+	-	+	+	H		-	+	+	+	\vdash	+	<u> </u>		+	H	+	-	-	\vdash	+-	1	H			
RC03	5.00	6.50	C		04/10/19		1	1	_	1	H		+	1	1	_	+	-	+	1	H	_			1	\dagger	H			\top	+	H	-	1		1	1	1			A	ALS Ref: 191021-15
RC03	6.50	8.00	C		04/10/19		1 1		-		H		1	Ť			T				t			1	1	H				1				1			1	1				
RC03	8.00	8.60	С		04/10/19																																					
RC03	8.60	9.50	С		04/10/19		1			1																																
RC03	9.50	11.00	С		04/10/19																																					•
RC03	11.00	12.50	С		04/10/19						$oxed{oxed}$										oxdot	[$oldsymbol{oldsymbol{\sqcup}}$						Ш										
RC03	12.50	14.00	С		04/10/19		1			1	Ш		_							1					1		Ш			_ _							1					
RC03	14.00	15.00	С	l	04/10/19		1 1	1	1		1				1			1	- 1	1	1		- 1	1	1				1		1	1	- 1	1		1	1	l				

0* Core not suitable


Summary of Classification Test Results

Project Name

2019	C106						Co	oom \	Wind Fa	arm					
Hole No.			mple	_		Soil Description	Dens bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Remarks
	Ref	Тор	Base	Туре			Mg/m	3	%	%	%	%	%	Mg/m3	
RC02		3.50	5.00	С	3.5- 3.8	Multicoloured coarse GRAVEL.			0.8	0					
RC02		6.50	8.00	С	6.5- 8.0	Multicoloured slightly slity slightly sandy coarse and medium GRAVEL.			0.6	3					
RC03		2.00	3.50	С		Red-brown slightly gravelly slightly sandy SILT.			16.0	89	39	18	21		CI
RC03		5.00	6.50	С	6.4	Red-brown very sandy very silty medium GRAVEL.			4.7	42	29	17	12		CL
RC03		8.60	9.50	С	8.6- 9.5	Grey sandy medium anc coarse GRAVEL.			0.4	3					
RC03		12.50	14.00	С	12.5- 14.0	Red-brown very sandy very silty medium and coarse GRAVEL.			5.0	43					
All tests perfo	ormed	in acco	rdance v	vith BS	31377:	1990 unless specified othe	rwise								
Key	taa'			Devi C	ina!*	5	a alan - M		Date F	rinted		Appr	oved	Ву	Table
	easure	ment unles	s:	Liquid L 4pt con	e unless	s: sp - sn	e density nall pyknom	eter	3	31/10/20	19				1
wd - wat wi - imn				1pt - sir NP - No	ngle poir on Plasti		s jar		QC F	rom No	: R1				sheet 1

	Plasticity (A-Line) Chart	Project Number
Project Name:	Coom Wind Farm	
Location:		2019C106

Abreviations in the remarks column of the Classification Summary Sheet: C = Clay, M = Silt Plasticity abeviations: L = Low, I = Intermediate = H = High, V = Very High, E = Extremely High.

The letter O is added to the symbol of any material containing a significant proportion of organic material.

Chart taken from BS5930: 2010

A T E D	ZE DISTRIBUTION	-	
		Borehole/Pit No.	RC02
Site Name Coom Wind Farm		Sample No.	
Soil Description Multicoloured coarse GRAVEL		Depth, m	3.50
Specimen Specimen Reference Dep	imen 3.5-3.8	m Sample Type	С
Test Method BS1377:Part 2:1990, clause 9	2	KeyLAB ID	IDL1201910149
CLAY SILT Fine Medium Coarse	SAND ine Medium Coarse F	GRAVEL Fine Medium Coarse	COBBLES BOULDERS
100			
90		 	
80		/	
% 70		<u> </u>	
Percentage Passing 40 - 00 - 00 - 00 - 00 - 00 - 00 - 00			
e 50			
<u>au</u> 40			
[™] 30		<i></i>	
20		<u> </u>	
10			
0.001 0.01	1 1	10	100 1000
0.001	Particle Size mm	10	1000
Sieving Se Particle Size % Passing Particle Si	e % Passing	Dry Mass of sample, g	1043
mm 70 radoung mm		ple Proportions	% dry mass
75 100	Very Grave	coarse	0 100
63 100	Sand		0
50 85		0 10 062 mm	
37.5 73 28 37	Fines	s <0.063mm	0
20 17		ling Analysis	
14 5	D100		22.2
10 2 6.3 1	D60 D30	mm	33.8 25.1
5 0	D30	mm mm	16.3
3.35 0		ormity Coefficient	2.1
2 0		ature Coefficient	1.1
1.18 0		- India	
0.6 0 0.425 0	Rema	arks ration and testing in accordance with BS	1377 unless noted below
0.425 0	Перан	and tooming in docordance will bo	dilloco ilotto polott
0.212 0			
0.15 0			
0.063 0			
Operator Checked	Approved	Sheet printed	1
Dympr	a Darcy B.Sc.	31/10/2019 10:42	QC From No:R2

	j	Dp.			_				.						Job Ref		2	019C106
' IR.	5 ²	DRILLIA	600		P	ARTIC	LE	E SIZE	DIST	RIE	3UT	ION			Borehole	/Pit No.		RC02
s	ite Na	me		Coo	m Wind F	arm									Sample N	No.		
s	oil De	scription		Multi GRA		lightly si	ilty	slightly sa	ndy co	arse	and	medi	um		Depth, m	ı		6.50
	pecim eferer							Specimen Depth			6.5	-8.0		m	Sample 1	Гуре		С
Т	est Me	ethod		BS13	377:Part 2	1990, c	laus	se 9.2							KeyLAB	ID	IDL	12019101413
	-	CLAY	Fin		SILT Medium	Coarse		Fine		ND dium		oarse		ine	GRAVEL Medium	Coarse	COBBLES	BOULDERS
	100		FIII	<u> </u>	Wedium	Coarse	3	Fille	ivie	ululli	1 0	Jaise	1 -	ine	iviedium	Coarse		:
	90						\parallel											
	80						\parallel											
νο.	70	\sqcup					\parallel											
% Buis	60						\perp											
Percentage Passing	50	\sqcup					\parallel											
entage	40						\perp											
Perc	30	Ш		Ш			Ц									/		
	20						Ш											
	10																	
												-	_					
	0 0.	001		0.01			0.1		Dor	ticle S	1	mm		10		100	1000	
										Pai	ucie s	oize	mm					
			Sie	ving		1		Sedimer	ntation	<u> </u>		1						
	Р	article S			Passing	Pai		e Size m		Passi	ng			Dry M	lass of san	nple, g		1184
															oportions		%	dry mass
		75			100	-							Very Grave	coarse	e			97
		63			100								Sand					2
		50			80			二丁					ļ					
		37.5 28			57 35	-							Fines	s <0.06	63mm			2
		20			30			+					Grad	ing A	nalysis			
		14			20								D100			mm		
		10			11								D60			mm		39.1
		6.3 5			6	-							D30 D10			mm		19.9 9.41
		3.35			5 4	-						l		rmity	Coefficient	mm		4.2
		2			3	\dashv		+							Coefficient			1.1
		1.18			3							l					<u> </u>	
		0.6			3							1	Rema	arks				
		0.425			3								Prepar	ation an	d testing in acco	ordance with BS	1377 unless r	oted below
		0.3			2		-		_									
	-	0.212			2													
		0.15 0.063			2	\dashv												
				· I			ı					•			Sheet printe	d		1
	Op	Operator Checked Approved															1	
							Dу	mpna Dar	cy B.S	Sc.				31	/10/2019 10	:42		QC From No:R2
Щ.		Dympna Darcy B.Sc.									20							

	J	Da.													Job Ref		20	019C106
IRIC	54 M	DRILL	200		P/	ARTIC	LE :	SIZE	DIS	TRII	3U1	ION	l	ŀ	Borehol	e/Pit No.		RC03
s	ite Na			Coor	m Wind F	arm									Sample	No.		
s	oil De	scription	า	Red-l	orown slig	htly grav	elly s	lightly	sandy	SILT.					Depth, r	m		2.00
	pecim eferer							ecime pth	n		2.3	3-2.5	m		Sample	Туре		С
Т	est Me	ethod		BS13	77:Part 2	1990, cl	ause	9.2							KeyLAE	3 ID	IDL12	2019101423
	-	CLAY	Fin	ie	SILT Medium	Coarse		Fine		AND	T c	oarse	Fine		GRAVEL Medium	Coarse	COBBLES	BOULDERS
	100											П						
	90									_	+							
	80													i				
%	70							\times										
	60	H					+				+			-				
Percentage Passing	50	\blacksquare					+				#							
rcenta	40	H									+			-				
Pe	30													-				
	20										+							
	10																	
	0	.001			0.01			0.1				1			10		100	1000
	0.	.00								Par	ticle	Size	mm		.0		.00	.000
												_						
	P	Particle S		ving %	Passing	Par	ticle S	Sedime Size		n Passi	na	1	Dry l	Ma	ass of sa	mple, g		769
		75 100				-	mm		70	1 4331		┨	Sample F	Pro	portions		%	dry mass
		75 100]	Very coar Gravel	se)			7
		63			100							1	Sand					29
	-	50 37.5			100	$-\parallel$						-	Fines <0.0	06	3mm			64
		28			100							1					1	
	\vdash	20 14			97 97	+						1	Grading A	An	nalysis	mm	1	
		10			97							1	D60			mm		
		6.3 5			95 95	_						4	D30 D10			mm		
		3.35			95	╫						1	Uniformity	y C	Coefficient	mm		
		2			93							1	Curvature					
		1.18 0.6			92 91	-						4	Remarks					
	-	0.6			89	┨								and	I testing in ac	cordance with B	S1377 unless no	ted below
		0.3			88							1						
	<u> </u>	0.212 0.15			83 77	4												
		0.15			64	1												
				· 										S	Sheet print	ed		<u> </u>
	Operator Checked							oved				3		10/2019 1			1	
					Dym	pna Da	arcy B.	Sc.				٠,	5101			QC From No:R2		

	De.		_						Job Ref	20	19C106
' IR.	DRIL	ING.	P	ARTIC	LE SIZE D	ISTRIE	BUTION		Borehole/Pit No.		RC03
s	ite Name		Coom Wind	Farm					Sample No.		
	oil Description	on	Red-brown ve	ry sandy	very silty mediu	ım GRAV	EL.		Depth, m		5.00
	pecimen eference				Specimen Depth		6.1-6.4	m	Sample Type		С
Т	est Method		BS1377:Part 2	2:1990, cl	lause 9.2				KeyLAB ID	IDL12	2019101427
	CLAY	Fir	SILT Medium	Coarse	e Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100										
	90										
	70										
ssing %	60										
Percentage Passing	50										
ercenta	40										
ď	30										
	20										
	10										
	0.001		0.01		0.1	Par	1 icle Size	mm	10	100	1000
			ving		Sedimenta	ation		Dry M	ass of sample, g		587
	Particle mm		% Passing	Par	rticle Size mm	% Passir	ng	Sample Pro		0/	dry mass
								Very coarse		70	0
	75 63		100 100				_	Gravel Sand			53 22
	50		100					Janu			
	37.5	5	100					Fines < 0.06	33mm		25
	28		91 82					Grading Ar	nalveie	1	
	14		71		+		\dashv	D100	mm		
	10		59					D60	mm		10.2
	6.3		52					D30	mm		0.0975
	5 3.35	5	50 49					D10 Uniformity (mm Coefficient		
	2	<u>-</u>	47					Curvature C			
	1.18		45					-			
	0.6		43	_				Remarks	d testing in accordance with BS	1377 unless se	ted helow
	0.42		42 41					i iepaialiūti and	a testing in accordance with BS	TOTT UTILESS (10)	ISG DEIOW
	0.21		38								
	0.15		35								
	0.06	3	25								
	Operator	,	Checke	ed	Approve	ed			Sheet printed		1
					Dympna Darcy	B.Sc.		31/	/10/2019 10:42		QC From No:R2

	1	DR.		_	45=		D10==-	D		Job Ref	20	19C106
IRVe	5 ²	DRILLIA	600	P 	ARTIC	LE SIZE	DISTRI	BUTION		Borehole/Pit No.		RC03
s	ite Na	me		Coom Wind	Farm					Sample No.		
		scription	ı	Grey sandy m	edium an	c coarse GR	AVEL.			Depth, m		8.60
	pecim eferen					Specimen Depth		8.6-9.5	m	Sample Type		С
Т	est Me	ethod		BS1377:Part 2	2:1990, cl	lause 9.2				KeyLAB ID	IDL12	2019101433
	_	CLAY	Fin	SILT e Medium	Coarse	e Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100											
	90											
% £	70									/		
assing	60											
Percentage Passing	50											
Percei	30											
	20											
	10											
	0											
	0.0	001		0.01		0.1	Pa	1 rticle Size	mm	10	100	1000
	P	article S		ving % Passing	Par	Sedimer rticle Size mm	ntation % Pass	ing	Dry M	ass of sample, g		1837
		111111							Sample Pro		%	dry mass
		75		100	+				Very coarse Gravel	2		94
		63		100					Sand			5
		50 37.5		100 76	\dashv	+			Fines < 0.06	S3mm		1
		28		64								
	-	20 14		37 34				\longrightarrow	Grading Ar D100			
	\vdash	10		22	\dashv	+		\dashv	D100	mm mm	1	26.7
		6.3		11					D30	mm		12.6
		5		10					D10	mm		5.29
	-	3.35		8 6	—	-		\longrightarrow	Uniformity (Curvature (5.1 1.1
	\vdash	1.18		5	\dashv	+		\dashv	Curvature (odenicient .	<u> </u>	1.1
		0.6		4				\neg	Remarks			
		0.425		3	\Box				Preparation and	d testing in accordance with BS	1377 unless not	ted below
	-	0.3		2	_							
	\vdash	0.212		2	\dashv							
		0.063		1								
	Operator Checked Approved									Sheet printed /10/2019 10:42		1
		Dympna Darcy B.Sc.							01/			QC From No:R2

Dympna Darcy B Sc 31/10/2019 10:42		DP			4 D.T. C	\ -		NIT'S:		Job Ref	20	19C106
Soil Description Red-brown very sandy very silly medium and coarse GRAVEL Depth, m 12.50	IRLe	N. T.	LING	P	AKTIC	LE SIZE D	JISTRII	SUTION		Borehole/Pit No.		RC03
Specimen Reference Refer	s	ite Name		Coom Wind	Farm					Sample No.		
Test Method BS1377-Part 2-1990, clause 9.2 ReyLAB ID IDL12019101438 IDL1201910143			otion	Red-brown ver	y sandy		um and c	oarse GRA\	/EL.	Depth, m		12.50
CLAY Fine Medium Coarse Fine Fine Medium Coarse Fine Medium Fine Fine Medium Fine Fine Medium Fine Fine Medium Fine Fin								12.5-14.0	m	Sample Type		С
CLN Fine Medium Coases Medium Coases Fine Medium Medium Coases Fine Medi	T	est Method	d	BS1377:Part 2	:1990, cl	lause 9.2				KeyLAB ID	IDL12	2019101438
Seving		CLA	AY Fir		Coarse	e Fine		Coarse	Fine		COBBLES	BOULDERS
Sieving		100										
Sieving												
Sieving												
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 1689	% b											
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 1689	Passin											
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 1689	ntage l											
Sieving Sedimentation Particle Size mm	Perce											
Sieving												
Sieving												
Sieving												
Particle Size mm		0.001		0.01		0.1	Par	1 ticle Size	mm	10	100	1000
Particle Size mm												
Sample Proportions % dry mass		Partic			Par				Dry M	ass of sample, g		1689
To To To To To To To To		m	nm	% Passing		mm	% Passi	ng	Sample Pro	oportions	%	dry mass
Sand 23)		
Society					-							
Sheet printed Sheet printe					-				sana			۷۵
28 90					\dashv	+		\dashv	Fines < 0.06	3mm		28
Company Description Checked Approved Sheet printed S		-		1	1							
Decompose Deco		2	20							nalysis		
D30 mm 0.0816 D10 mm Uniformity Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Remarks Preparation and testing in accordance with BS1377 unless noted below Sheet printed Sheet printed Sheet printed 31/10/2019 10:42 Sheet printed Shee								_]		mm		
D10 mm	ĺ				—							
3.35 53 Uniformity Coefficient	ĺ				-							0.0816
Curvature Coefficient					-			\longrightarrow				
1.18					+			-				
0.6 44 Remarks 0.425 43 Preparation and testing in accordance with BS1377 unless noted below 0.3 41 0.212 39 0.15 36 0.063 28 Operator Checked Approved Sheet printed 31/10/2019 10:42					+	+		\dashv	Jan Falaro C		<u> </u>	
0.425 43 0.3 41 0.212 39 0.15 36 0.063 28 Preparation and testing in accordance with BS1377 unless noted below Sheet printed 31/10/2019 10:42						<u> </u>		\neg	Remarks			
0.212 39 0.15 36 0.063 28 Operator Checked Approved Sheet printed 31/10/2019 10:42				43					Preparation and	d testing in accordance with BS	1377 unless not	ted below
0.15 36 0.063 28 Operator Checked Approved Sheet printed 31/10/2019 10:42												
0.063 28 Operator Checked Approved Sheet printed 31/10/2019 10:42					_							
Operator Checked Approved Sheet printed 1 Dymona Darcy B Sc. 31/10/2019 10:42					4							
Operator Checked Approved 1 Dymona Darcy B Sc. 31/10/2019 10:42		0.0	U63	28								
Dymona Darcy B Sc 31/10/2019 10:42		Operat	or	Checke	d	Approv	ed		S	Sheet printed		1
I I I I I I I I I I I I I I I I I I I						Dympna Darc	y B.Sc.		31/	10/2019 10:42		QC From No:R2

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com

Website: www.alsenvironmental.co.uk

Irish Drilling Limited Old Galway Road Loughrea Co. Galway

Attention: Dympna Darcy

CERTIFICATE OF ANALYSIS

Date of report Generation: 28 October 2019 Irish Drilling Limited **Customer:**

Sample Delivery Group (SDG): 191021-15 2019C106 Your Reference: Coom WF Location: 527195 Report No:

We received 3 samples on Monday October 21, 2019 and 3 of these samples were scheduled for analysis which was completed on Monday October 28, 2019. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan **Operations Manager**

Validated

SDG: 191021-15 Location: Coom WF

Client Reference: Order Number:

2019C106 7431

Report Number: Superseded Report: 527195

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
20983715	RC1	CORE1	6.10 - 6.40	07/10/2019
20983717	RC2	CORE1	11.90 - 12.40	08/10/2019
20983719	RC3	CORE1	6.50 - 6.60	04/10/2019

Maximum Sample/Coolbox Temperature (°C):

12.4

ISO5667-3 Water quality - Sampling - Part3 -

ALS have data which show that a cool box with 4 frozen icepacks is capable of

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

maintaining pre-chilled samples at a temperature of $(5\pm3)^{\circ}$ C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

CERTIFICATE OF ANALYSIS

ALS

 SDG:
 191021-15
 Client Reference:
 2019C106
 Report Number:
 527195

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Location.	Coom w		Oruc	JI INUI	mber.
Results Legend X Test No Determination	Lab Sample N	20983715	20983717	20983719	
Possible Sample Types -	Custome Sample Refer		RC1	RC2	RC3
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce	CORE1	CORE1	CORE1
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m	6.10 - 6.40	11.90 - 12.40	6.50 - 6.60	
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)
	Sample Ty	pe	S	S	S
Anions by Kone (soil)	All	NDPs: 0 Tests: 3			
all.	All		Х	Х	Х
рН	All	NDPs: 0 Tests: 3	Х	Х	Х
Sample description	All	NDPs: 0			
		Tests: 3	X	X	X

 SDG:
 191021-15
 Client Reference:
 2019C106
 Report Number:
 527195

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Sample Descriptions

Grain Sizes

very fine <0.	063mm fine 0.0	063mm - 0.1mm m	edium 0.1mm	n - 2mm coai	rse 2mm - 10	Omm very coa
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2
20983715	RC1	6.10 - 6.40	Dark Brown	Stone/Soil	Stones	Vegetation
20983717	RC2	11.90 - 12.40	Dark Brown	Stone/Soil	Stones	None
20983719	RC3	6.50 - 6.60	Dark Brown	Loamy Sand	Stones	None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

 SDG:
 191021-15
 Client Reference:
 2019C106
 Report Number:
 527195

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Results Legend # IS017025 accredited.	(Customer Sample Ref.	RC1	RC2	RC3		
M mCERTS accredited.							
diss.filt Dissolved / filtered sample.		Depth (m)	6.10 - 6.40	11.90 - 12.40	6.50 - 6.60		
tot.unfilt Total / unfiltered sample.	far	Sample Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)		
 Subcontracted - refer to subcontractor report accreditation status. 	tor	Date Sampled	07/10/2019	08/10/2019	04/10/2019		
** % recovery of the surrogate standard to check efficiency of the method. The results of individual standard to check efficiency of the method. The results of individual standard to check efficiency of the surrogate standard to check efficiency of the	k the	Sample Time	21/10/2019	21/10/2019	21/10/2019		
compounds within samples aren't corrected for	or the	Date Received SDG Ref	191021-15	191021-15	191021-15		
recovery (F) Trigger breach confirmed			20983715	20983717	20983719		
1-3+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	CORE1	CORE1	CORE1		
Component	LOD/Units	Method					
Moisture Content Ratio (% of as	%	PM024	5.1	5.2	12		
received sample)							
pH	1 pH Units	TM133	7.4	7.58	8.58		
F	. p cc		#	#	M		
Water Saluble Sulphate as SO4	<0.004 g/l	TM243	0.0168	<0.004			
Water Soluble Sulphate as SO4 2:1 Extract	<0.004 g/I	1101243			0.0077		
Z. I EXITACI			#	#	M		
		-					

 SDG:
 191021-15
 Client Reference:
 2019C106
 Report Number:
 527195

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Table of Results - Appendix

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM243		Mixed Anions In Soils By Kone

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Validated

CERTIFICATE OF ANALYSIS

 SDG:
 191021-15
 Client Reference:
 2019C106
 Report Number:
 527195

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Test Completion Dates

Lab Sample No(s)	20983715	20983717	20983719
Customer Sample Ref.	RC1	RC2	RC3
AGS Ref.	CORE1	CORE1	CORE1
Depth	6.10 - 6.40	11.90 - 12.40	6.50 - 6.60
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Anions by Kone (soil)	28-Oct-2019	28-Oct-2019	28-Oct-2019
рН	28-Oct-2019	28-Oct-2019	28-Oct-2019
Sample description	22-Oct-2019	22-Oct-2019	22-Oct-2019

 SDG:
 191021-15
 Client Reference:
 2019C106
 Report Number:
 527195

 Location:
 Coom WF
 Order Number:
 7431
 Superseded Report:

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name					
Chrysof le	White Asbests					
Amosite	Brow n Asbestos					
Cro d dolite	Blue Asbe stos					
Fibrous Act nolite	-					
Fibrous Anthophyllite	-					
Fibrous Tremolite	-					

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2107).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

IDL		IRIS.	RILLING	Point Load Strength Index Tests Summary of Results														
Project No.	2019C106			Projec	t Name					Coc	m Win	d Farm	ı					
Borehole	Sample		Sample		cimen	Rock Type		Type ISRM	llid (Y/N)		Dime	nsions		Force P	Equivalent diameter, De		t Load th Index	Remarks (including water
No.	Top Depth m	Base Depth m	Туре	Ref m	Depth m	and Test condition	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps mm	Dps'	kN	a Equivale	Is MPa	Is(50) MPa	
RC01	6.10	7.5	С	6.75	7.04		D	U	YES		63.0		63.0	1.4	63.0	0.4	0.4	Weak
RC02	11.00	12.5	С	11.8	11.94		D	U	YES		63.0		63.0	2.2	63.0	0.6	0.6	Weak
RC02	12.50	13.6	С	12.7	12.86		D	U	YES		63.0		63.0	2.8	63.0	0.7	0.8	Weak
	<u> </u>																	
	<u> </u>																	
Test Type																		
D - Diametral, A Direction L - parallel to pl P - perpendicul U - unknown or Dimensions Dps - Distance Dps' - at failure Lne - Length fro W - Width of s	lanes of wea ar to planes random between pla (see ISRM om platens to	akness of weak atens (pl note 6) o neares	ness aten s	eparatio end	n)		D _{ps} €	Diamet	ral P	<u>(w</u>	D _{ps}	, <u> </u>	P	•	ne ,	V	/ /	D _{ps}
Test performed in accordance with ISRM Suggested Methods : 2007, unless noted otherwise Detailed legend for test and dimensions, based on ISRM, is shown above. Size factor, F = (De/50)0.45 for all tests.									Date F	Printed 1/10/20	19	Appro	ved B	y	Table sheet	1		

DL	N. N. S. A.	DRILLIAG			IIAXIAL CC	MPF	RESS	ION	TEST (ON RC	OCK - S	UMM	ARY	OF I	RESULTS		
oject No. 2019	9C106		Project	roject Name Coom Wind Farm													
		Sar	nple				Specime mensior		Bulk	Water	Unia	xial Com					
Hole No.	Ref	Тор	Base	Туре	Specimen Depth (m)	Dia.	Length	H/D	Density2	Content 1	Condition	Stress Rate	Mode of failure	UCS	Remarks		
RC01		6.10	7.50	С	6.4-6.75	mm 63.0	mm 166.6	2.6	Mg/m3 2.61	%	as received	MPa/s 0.1412	S	MPa 4.9	Very Weak		

Date Printed

31/10/2019

Approved By

Table

sheet

1

above notes apply unless annotated otherwise in the remarks

International Society for Rock Mechanics, The complete ISRM suggested methods for Rock Characterization Testing and Monitoring, 2007 $\,$

Test Specification

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

APPENDIX 6

Directors: HERB M. STANLEY, B.Sc., B.A., (Canadian) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., RONAN KILLEEN, B.E., C.Eng., M.I.E.I., (Secretary) Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

Irish Drilling Ltd: Core Photos:

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

APPENDIX 7

Directors: HERB M. STANLEY, B.Sc., B.A., (Canadian) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., (Secretary) Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

Figure 1 H:\2019C106_CoomWF\Bp1-tp1...jpg

Figure 2 H:\2019C106_CoomWF\Bp1-tp1..jpg

Figure 3 H:\2019C106_CoomWF\Bp1-tp1.jpg

Figure 4 H:\2019C106_CoomWF\Bp1-tp2....jpg

Figure 5 H:\2019C106_CoomWF\Bp1-tp2..jpg

Figure 6 H:\2019C106_CoomWF\Bp1-tp2.jpg

Figure 7 H:\2019C106_CoomWF\Bp1-tp3...jpg

Figure 8 H:\2019C106_CoomWF\Bp1-tp3..jpg

Figure 9 H:\2019C106_CoomWF\Bp1-tp3.jpg

Figure 10 H:\2019C106_CoomWF\Bp2-tp1...jpg

Figure 11 H:\2019C106_CoomWF\Bp2-tp1..jpg

Figure 12 H:\2019C106_CoomWF\Bp2-tp1.jpg

Figure 13 H:\2019C106_CoomWF\Bp2-tp2...jpg

Figure 14 H:\2019C106_CoomWF\Bp2-tp2..jpg

Figure 15 H:\2019C106_CoomWF\Bp2-tp2.jpg

Figure 16 H:\2019C106_CoomWF\Bp2-tp3...jpg

Figure 17 H:\2019C106_CoomWF\Bp2-tp3..jpg

Figure 18 H:\2019C106_CoomWF\Bp2-tp3.jpg

Figure 19 H:\2019C106_CoomWF\Bp2-tp4..jpg

Figure 20 H:\2019C106_CoomWF\Bp2-tp4.jpg

Figure 21 H:\2019C106_CoomWF\Bp3-tp1...jpg

Figure 22 H:\2019C106_CoomWF\Bp3-tp1..jpg

Figure 23 H:\2019C106_CoomWF\Bp3-tp1.jpg

Figure 24 H:\2019C106_CoomWF\Bp3-tp3...jpg

Figure 25 H:\2019C106_CoomWF\Bp3-tp3..jpg

Figure 26 H:\2019C106_CoomWF\Bp3-tp3.jpg

Figure 27 H:\2019C106_CoomWF\T13...jpg

Figure 28 H:\2019C106_CoomWF\T13..jpg

Figure 29 H:\2019C106_CoomWF\T13.jpg

Figure 30 H:\2019C106_CoomWF\T20...jpg

Figure 31 H:\2019C106_CoomWF\T20..jpg

Figure 32 H:\2019C106_CoomWF\T20.jpg

Figure 33 H:\2019C106_CoomWF\T22...jpg

Figure 34 H:\2019C106_CoomWF\T22..jpg

Figure 35 H:\2019C106_CoomWF\T22.jpg

Figure 36 H:\2019C106_CoomWF\T23...jpg

Figure 37 H:\2019C106_CoomWF\T23..jpg

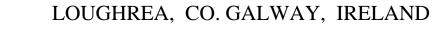


Figure 38 H:\2019C106_CoomWF\T23.jpg

Figure 39 H:\2019C106_CoomWF\Tp2-bp4...jpg

IRISH DRILLING LIMITED

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

APPENDIX 8 SEPARATE FOLDER

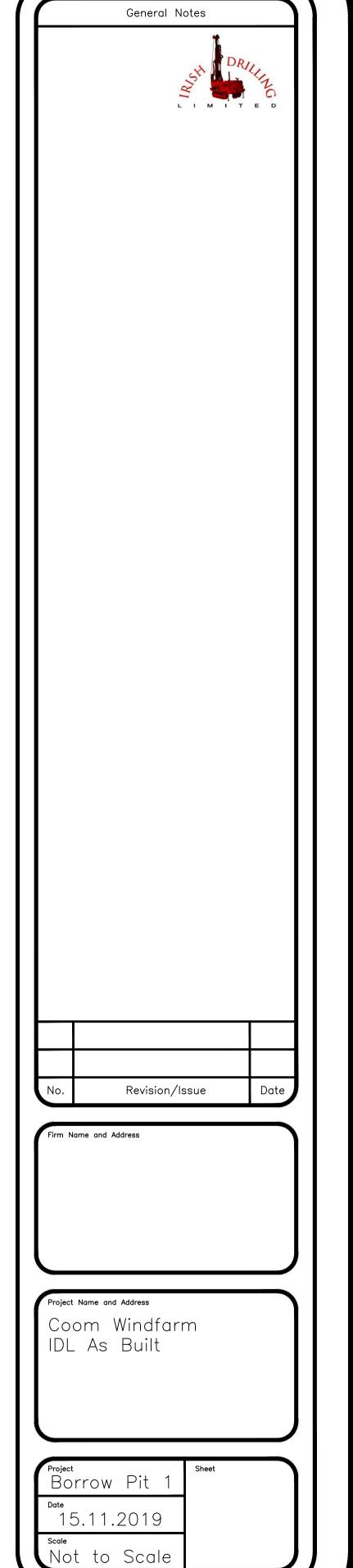
Directors: HERB M. STANLEY, B.Sc., B.A., (Canadian) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., (Secretary)
Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

IRISH DRILLING LIMITED

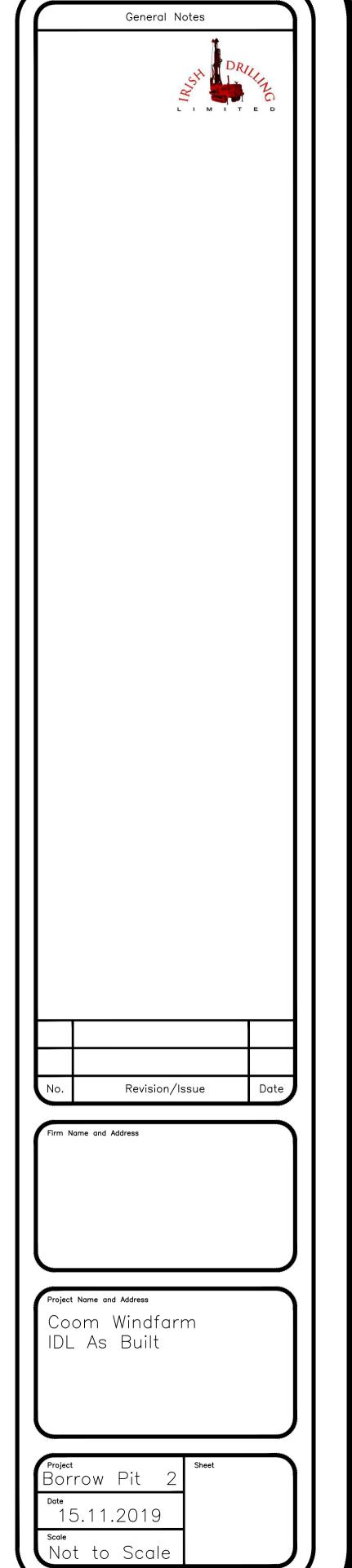
LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

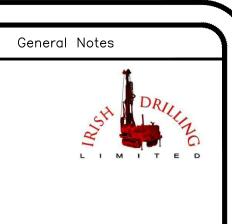
Phone: (091) 841 274 Fax: (091) 847 687


email: <u>info@irishdrilling.ie</u>

COOM WIND FARM

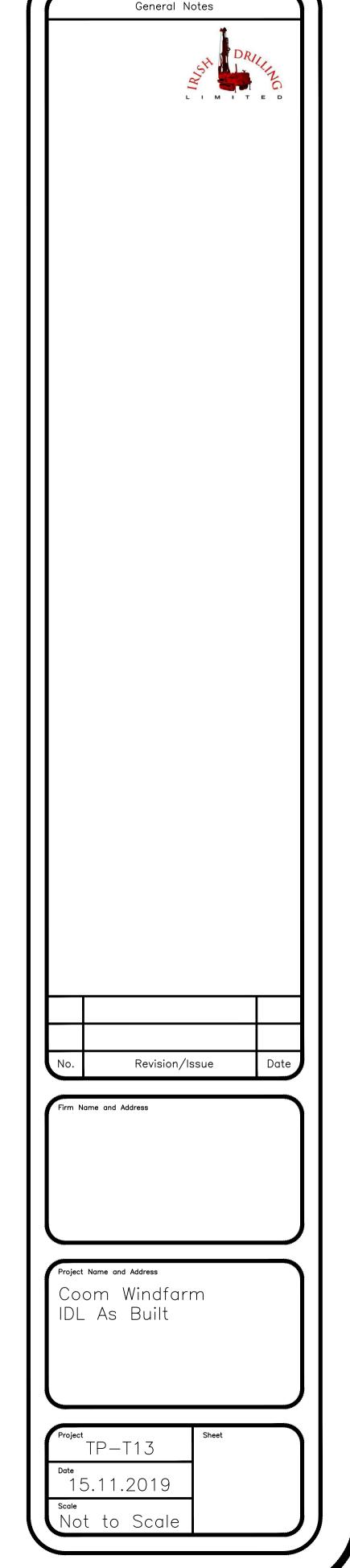

APPENDIX 9

Directors: HERB M. STANLEY, B.Sc., B.A., (Canadium) EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., (Secretary) Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

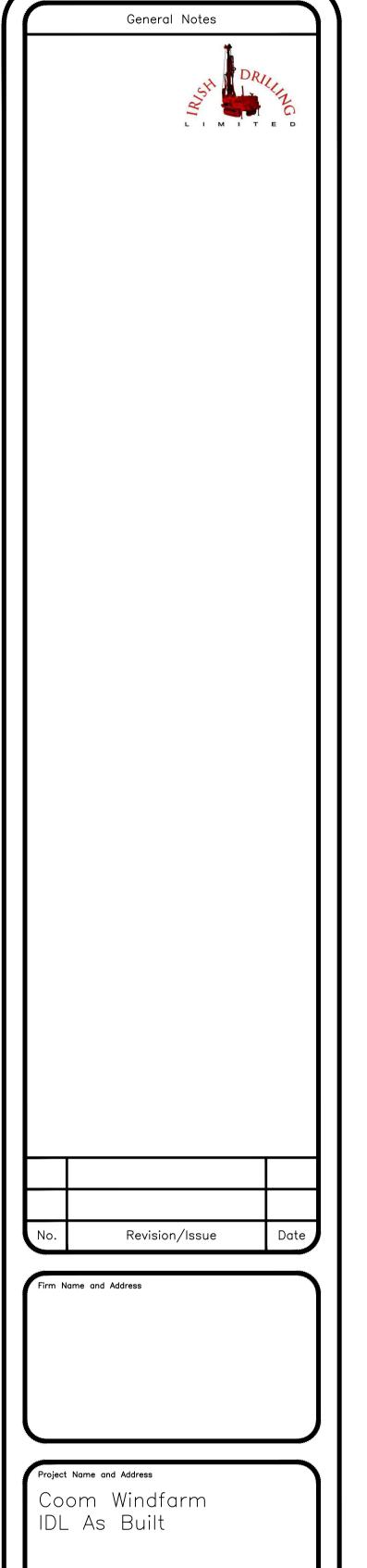


No.	Revision/Issue	Date

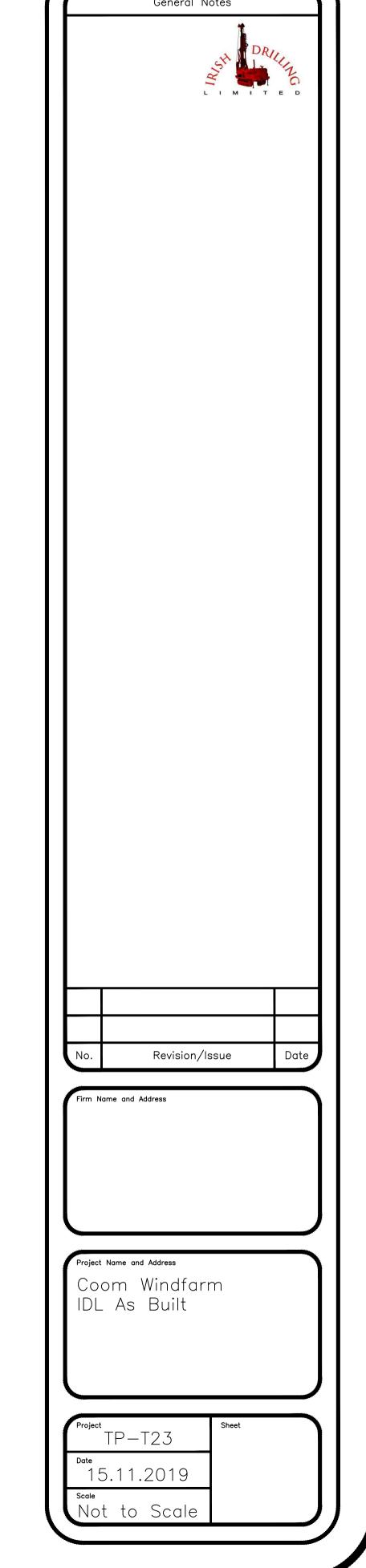
Project Name and Address

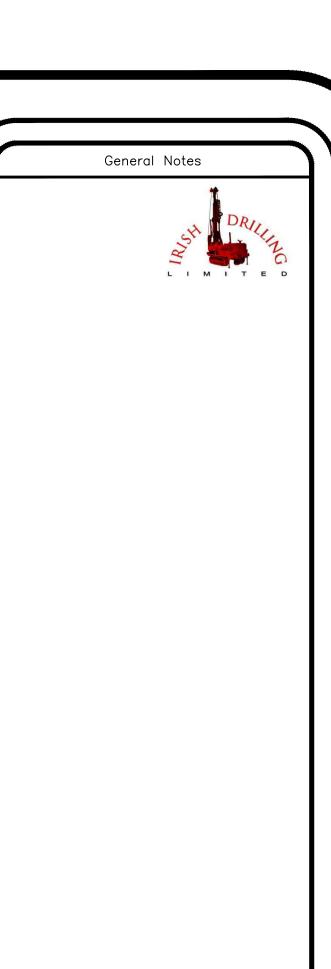

Coom Windfarm
IDL As Built

Project
Borrow pit 3


Date
15.11.2019

Scale





417	No.	Revision/Issue	Date

Firm Name and Addres

Project Name and Address

Coom Windfarm

IDL As Built

Project
RC-1/RC2

Date
15.11.2019

Scale

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX D

Geotechnical Risk Register

Fight (i.e. Potential Impact) Page 64 in the control to besign Potential Control Notations Page 64 in the control to t	o _N	° N	o N	O _N	o _N	No	No	ON	0 N	Residual Risk?
Carry out sope stability analysis of areas Construction P 1 R										Resi
Carry out stope stability analysis of a reas Garry out stope stability analysis of a reas Specify exclusion zones at the edge of provide clear markings to show the externt Specify exclusion zones at the edge of provide clear markings to show the externt Specify exclusion zones at the edge of provide clear markings to show the externt Specify exclusion zones at the edge of provide clear markings to show the externt Cacluste thicknesses based on underlying of both subgrade and finished road in control on material to specify on-attential to show for subgrade strength. Specify on-attential to show for subgrade strength. Specify on-attential to sale of both subgrade and finished road to show for severational method to allow for special strength at the string regime to allow for special strength or attended design is to be control on materials used in roads Comply with testing regime to allow for comply with design Notify designer if deninge is likely (or redirect drainage. Provide dear markings stope angles. Verify assumed ground conditions on site. In sering the string regime of the stable angle is likely (or redirect drainage. Provide clear markings some conservative design is to be comply with design notify the signer of the strength of the marking some variation on site in terms sering regime control on materials used in roads and design stopes for stable angle seventical engineer. Comply with design of side stopes for stable angle seventical engineer. Comply with design sof instability signs of instability is signs of instability. Adhere to design stopes for stable angle seventical engineer construction for signs of instability.	ю									ating R
Corry out slope stability analysis of areas where working platforms are specified on for site supervision and monitoring of greater than 10% sloping ground, especially for slopes of greater than 10% secure working platforms are specified on for site supervision and monitoring of greater than 10% sloping ground, especially for slopes of machine width greater than 10% secure sometimes are specified on the supervision and monitoring of greater than 10% secure sometimes are specificated and secure sometimes of matchine width of the working platforms is usual) sometimes and secure sometimes of matchine width supervision or secure compliance. Specify on-ate testing of both subgrade and finished road to be supervised and finished road to be supervised and finished road to be supervised and finished road to be supervised and finished road to be supervised and finished road to secure complaince. Specify use of the fiscing for the subgrade and finished road to secure sometimes of material in softer and secure complainces of material in softer and secure sometimes are supervised and secure sometimes. Secure sometimes of material in softer and secure complainces of material in softer and secure sometimes are supervised and secure sometimes. Secured secures sometimes are supply with design in the fissue of comply with design is to be dealing selective delinings where excessively deep deep dealinings where excessively deep deep dealinings is likely for redirect dealinings where secures design slope angles. Verify assumed some variation on site in terms secure or secure supply and secure supply such and conditions on site. Monitor slopes during constitution for signs of side slopes for stable angle secure complying supply such and conditions on site. Monitor slopes during construction for signs of side slopes for stable angle secure or secure supply such and	ю									isk R
Risk Rating P I Risk Rating 3 5 15 4 5 15 2 4 8 4 8 8 4 8 8 3 5 12 4 8 8 3 5 15	or 1				1	1			H	E 6
Risk Rating P I Risk Rating 3 5 15 4 5 15 2 4 8 4 8 8 4 8 8 3 5 12 4 8 8 3 5 15	Design and utilise sufficient groundwater control method (such as sump pumping or groundwater extraction wells)							f Provide clear markings to show the extern of the working area and any exclusion zones		ntrol Measures Construction
Risk Ration	Notify contractor of groundwater ingress issue through risk register	Design of side slopes for stable angle based on the anticipated geology	Complete Additional Ground Investigation at detailed design stage. Design is to based on conservative design values trailow for some variation on site (in term of the strength of the material encountered)	Use 3D CAD to model drainage. Providi culverted drainage where excessively deel drainage is likely (or redirect drainage)	Specify a testing regime to allow fo control on materials used in roads	Calculate thicknesses based on underlying subgrade strength. Specify on-site testing of both subgrade and finished road to ensure compliance. Specify use of this observational method to allow fo additional thickness of material in softe areas	include additional thickness of platforn material or reinforcement at access slope (50% increase on design thickness)	Specify exclusion zones at the edge o working platforms (50% of machine widtl is usual)	Carry out slope stability analysis of areas where working platforms are specified on sloping ground, especially for slopes of greater than 10%	
	16	15	20	8	8	12	20	15	15	ing R
	4	r2	2	4	4	4	5	5	ហ	k Rati
rent instability issues used as sub- platform. Jintroducing load causing plant working close to the edge could fall or oppiling close to the edge could fall fall fall fall fall fall fall fa	4	m	4	2	2	3	4	3	m	Ris P
rent instability issues used as subplatform / introducing load causing bility to existing slopes ms have edges of some kind ms have edges of some kind ms have edges of some kind ing strata cause difficult to areas of materials (borrow pits for wess durable materials of inited and as such there is on is limited and as such there is oon is limited and can contain loose and gravels which can become lected to water flow or if slopes are steep an angle. Also, unfavourable uttings can cause instability.	Risk of inundation, softening of formation and danger to construction workers	Risk of collapse of side slopes causing injury or death to workers	If soft or voided ground is encountered at the affection level, then localized excavation and replacement will be required	Excessively deep drainage channels are a health and safety risk	Low durability materials can cause excess weathering of the fill material causing degradation of performance prior to the design life	The vertical alignment of the surface may become out of specification if differential settlement is excessive	Insufficient size and strength of access slopes could cause toppling of plant	Plant working close to the edge could fall or topple. Support at the edge of slopes is significantly reduced from support in the centre of the platform	Failure of the working platform. Slope instability causing toppling of plant	Risk (i.e. Potential Impact)
Slopes with inher grade for working install all working platform an wigate than flat an anigate than flat and anigate than flat an anigate than flat an anigate than flat and anigate than flat and anigate than flat and area. Topography and the anigate and the anigate and the anigate and area. Ground investigating anigating anigat	Shallow groundwater seepages in a range of 0.6 to 3.5 m bg!	Glacial Till is a variable strata and can contain loose layers of sands and gravels which can become unstable when subjected to water flow or if slopes are constructed at too steep an angle. Also, unfavourable dip angles in rock cuttings can cause instability.		Topography and the required fall for drainage can lead to excessively deep drainage channels	materials (borrow pits durable materials	Variable underlying strata cause settlement under loading	Access slopes are narrower and more difficult to navigate than flat areas	All working platforms have edges of some kind	Slopes with inherent instability issues used as subgrade for working platform / introducing load causing instability to existing slopes	Cause
	Groundwater ingress to temporary excavation	ř	ground					/orking	Global Slope Instability	
Work Element Hardstandings & Platforms Platforms Hardstandings & Platforms Hardstandings & Platforms Hardstandings & Platforms Hardstandings & Platforms Hardstandings & Platforms Hardstandings & Platforms Platforms Platforms Platforms Platforms Platforms Platforms	Hardstandings & Platforms	Hardstandings & Platforms	Hardstandings & Platforms	Hardstandings & Platforms	Hardstandings & Platforms	Hardstandings & Platforms	Hardstandings & Platforms	Hardstandings & Platforms	Hardstandings & Platforms	Work Element
N 2 8 8 7 8 8	б	00	^	9	ις	4	m	2	Н	No.

Ö.	Work Element	Hazard	Cause	Risk (i.e. Potential Impact)	Risk Rating	ating	Potential Control Measures	rol Measures	Risk F	Risk Rating	Residual Risk?
					-	~	Design	Construction	Ь	~	
10	Hardstandings & Platforms	Deterioration of formation by surface or ground water	Once excavated the formation is at risk of deterioration either due to loosening of granular materials or softening of cohesive materials from water ingress	f Any degradation in strength or stiffness may necessitate additional excavation to find a competent foundation	5	20	ldentify competent strata which is not susceptible to degradation where possible	Carry outsppropriate checks and testing in a timely fashion. Protect the formation during rainfal and include appropriate drainage to prevent surface water ingress. Use appropriate groundwater control. Check weather before working and do not excavate during periods of rain	2 4	8	Yes – extreme weather events may override mitigation measures and cause deterioration
11	Access Roads	Differential Settlement Variable on access roads settlemen	Variable underlying strata cause differential settlement under loading	The vertical alignment of the road may become out of specification if differential settlement is extreme	8 4	12	Calculate thicknesses based on underlying subgrade strength. Specify on-site testing of both subgrade and finished road to ensure compliance. Specify use of the observational method to allow for additional thickness of material in softer areas	Comply with monitoring action plan. Ensure designer is notified at an early stage if rutting occurs differentially	1 3		N
12	Access Roads	Durability of aggregate used in access roads	Variable sources of materials (borrow pits for example) may allow less durable materials into the road make-up	Low durability materials can r cause excess weathering of the road make-up causing degradation of performance prior to the design life	2 4	8	Specify a testing regime to allow for control on materials used in roads.	Comply with testing regime	1 3	8	No
13	Access Roads	Formation of high, steep banks	Topography combined with underlying geology leads to high steep access road sides	High steep banks are a health and safety risk to workers on site	2 4	8	Use 3D CAD to model access roads and Comply with design. Notify designer if identify areas where steep, high slopes are high, steep slopes are likely to be formed. Provide edge protection if required	Comply with design. Notify designer if high, steep slopes are likely to be formed. Provide edge protection if required	1 3	3	No
14	Access Roads	Deep drains adjacent to roads	Topography and the required fall for drainage can lead to excessively deep drainage channels	Excessively deep drainage n channels are a health and safety	2 4	8	Use 3D CAD to model drainage. Provide culverted drainage where excessively deep drainage is likely (or redirect drainage)	Comply with design. Notify designer if deep drainage is required	1 3		No
15	Turbine Foundations	Unexpected ground conditions	There is significant risk of localised variability within ground the large footprint of the turbine foundations. Detailed ground investigation should be undertaken before design stage	If soft or voided ground is encountered at the founding level, level then localised exaction and replacement will he required. Mixed soil must be avoided at the bottom of excavation	2	20	Detailed ground investigation should be undertaken before design stage	Monitor the ground conditions. Have formation inspections from geotechnical engineer. Comply with testing regime	1 4	4	ON
16	Turbine Foundations	Unstable side slopes	Glacial Till is a variable strata and can contain loose layers of sands and gravels which can become unstable when subjected to water flow or if slopes are constructed at too steep an angle. Also, unfavourable dip angles in rock cuttings can cause instability.	e Risk of collapse of side slopes causing injury or death to workers	3	15	Design of side slopes for stable angle based on the anticipated geology	Adhere to design slope angles. Verify assumed ground conditions on site. Monitor slopes during construction for signs of instability	1 4	4	N
17	Turbine Foundations	Groundwater ingress to temporary excavation	Groundwater ingress Groundwater was noted at 0.6 – 3.5m bgl during to temporary ground investigation excavation	~	4	16	Detailed ground investigation should be undertaken before design stage. Notify v contractor of groundwater ingress issue through risk register	Contractor to design and utilise sufficient groundwater control method (such as sump pumping or groundwater extraction wells) as well as perimetric dewatering ditches at the bottom of excavation and outside	1 3		No
18	Turbine Foundations	Variable Ground Profile	Variable underlying strata cause differential settlement under loading	The impact of this is potential differential settlement across the base. During cyclic loading the leave and the granular different rate to the granular bedrook and cause differential settlement	4	20	Carry out sensitivity design to identify potential differential settlement. Specify Adhere to Inspection & Testing Plan, carry dig and replace of clay to provide sufficient our PLT at formation level. Dig and replace load spread onto underlying clay to clay materials with suitable granular fill prevent differential settlement	Adhere to Inspection & Testing Plan, carry out PLT at formation level. Dig and replace clay materials with suitable granular fill	14	4	No – if all softer materials are replaced then the risk is negligible

N	No. Work Element	Hazard	Cause	Risk (i.e. Potential Impact)	Risk Rating	ating	Potential Cont	Potential Control Measures	Ris	Risk Rating	g Residual Risk?
					۵	æ	Design	Construction	۵	-	~
19	Turbine Foundations	Deterioration of formation by surface or ground water	Once excavated the formation is at risk of Am formation is at risk of Am formation by surface materials or softening of cohesive materials from add water ingress	k of Any degradation in strength or anular stiffness may necessitate from additional excavation to find a competent foundation	2	20	Carry out appropriate checks and testing in a timely fashion. Protect the formation during rainfall and include appropriate carries and regardation where possible drainage to prevent surface water ingress. Use appropriate groundwater control. Check weather before working and no not excavate during periods of rain	Carry out appropriate checks and testing in a timely fashion. Protect the formation during rainfall and include appropriate drainage to prevent surface water ingress. Use appropriate groundwater control. Check weather before working and no not excavate during periods of rain	2	4	Yes – extreme weather events may override mitigation measures and cause deterioration

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

www.fehilytimoney.ie

Core House Pouladuff Road, Cork, T12 D773, Ireland +353 21 496 4133

J5 Plaza, North Park Business Park, North Road, Dublin 11, D11 PXTO, Ireland

+353 1 658 3500

Carlow Office

Unit 6, Bagenalstown Industrial Park Bagenalstown, Co. Carlow, R21 XA00, Ireland +353 59 972 3800

NSAI Certified

